Explaining Autonomous Driving by Learning End-to-End Visual Attention
- URL: http://arxiv.org/abs/2006.03347v1
- Date: Fri, 5 Jun 2020 10:12:31 GMT
- Title: Explaining Autonomous Driving by Learning End-to-End Visual Attention
- Authors: Luca Cultrera, Lorenzo Seidenari, Federico Becattini, Pietro Pala,
Alberto Del Bimbo
- Abstract summary: Current deep learning based autonomous driving approaches yield impressive results also leading to in-production deployment in certain controlled scenarios.
One of the most popular and fascinating approaches relies on learning vehicle controls directly from data perceived by sensors.
The main drawback of this approach as also in other learning problems is the lack of explainability. Indeed, a deep network will act as a black-box outputting predictions depending on previously seen driving patterns without giving any feedback on why such decisions were taken.
- Score: 25.09407072098823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current deep learning based autonomous driving approaches yield impressive
results also leading to in-production deployment in certain controlled
scenarios. One of the most popular and fascinating approaches relies on
learning vehicle controls directly from data perceived by sensors. This
end-to-end learning paradigm can be applied both in classical supervised
settings and using reinforcement learning. Nonetheless the main drawback of
this approach as also in other learning problems is the lack of explainability.
Indeed, a deep network will act as a black-box outputting predictions depending
on previously seen driving patterns without giving any feedback on why such
decisions were taken. While to obtain optimal performance it is not critical to
obtain explainable outputs from a learned agent, especially in such a safety
critical field, it is of paramount importance to understand how the network
behaves. This is particularly relevant to interpret failures of such systems.
In this work we propose to train an imitation learning based agent equipped
with an attention model. The attention model allows us to understand what part
of the image has been deemed most important. Interestingly, the use of
attention also leads to superior performance in a standard benchmark using the
CARLA driving simulator.
Related papers
- Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
We propose a novel self-supervised method to enhance end-to-end driving without the need for costly labels.
Our framework textbfLAW uses a LAtent World model to predict future latent features based on the predicted ego actions and the latent feature of the current frame.
As a result, our approach achieves state-of-the-art performance in both open-loop and closed-loop benchmarks without costly annotations.
arXiv Detail & Related papers (2024-06-12T17:59:21Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - KARNet: Kalman Filter Augmented Recurrent Neural Network for Learning
World Models in Autonomous Driving Tasks [11.489187712465325]
We present a Kalman filter augmented recurrent neural network architecture to learn the latent representation of the traffic flow using front camera images only.
Results show that incorporating an explicit model of the vehicle (states estimated using Kalman filtering) in the end-to-end learning significantly increases performance.
arXiv Detail & Related papers (2023-05-24T02:27:34Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Reason induced visual attention for explainable autonomous driving [2.090380922731455]
Deep learning (DL) based computer vision (CV) models are generally considered as black boxes due to poor interpretability.
This study is motivated by the need to enhance the interpretability of DL model in autonomous driving.
The proposed framework imitates the learning process of human drivers by jointly modeling the visual input (images) and natural language.
arXiv Detail & Related papers (2021-10-11T18:50:41Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
Transformer-based models are popular for natural language processing (NLP) tasks due to its powerful capacity.
Attention map visualization of a pre-trained model is one direct method for understanding self-attention mechanism.
We propose a Differentiable Attention Mask (DAM) algorithm, which can be also applied in guidance of SparseBERT design.
arXiv Detail & Related papers (2021-02-25T14:13:44Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
We propose to use action-based driving data for learning representations.
Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery.
arXiv Detail & Related papers (2020-08-21T10:49:13Z) - Explicit Domain Adaptation with Loosely Coupled Samples [85.9511585604837]
We propose a transfer learning framework, core of which is learning an explicit mapping between domains.
Due to its interpretability, this is beneficial for safety-critical applications, like autonomous driving.
arXiv Detail & Related papers (2020-04-24T21:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.