Exploration-Exploitation Motivated Variational Auto-Encoder for
Recommender Systems
- URL: http://arxiv.org/abs/2006.03573v4
- Date: Thu, 10 Jun 2021 18:24:10 GMT
- Title: Exploration-Exploitation Motivated Variational Auto-Encoder for
Recommender Systems
- Authors: Yizi Zhang, Meimei Liu
- Abstract summary: We introduce an exploitation-exploration motivated variational auto-encoder (XploVAE) to collaborative filtering.
To facilitate personalized recommendations, we construct user-specific subgraphs, which contain the first-order proximity capturing observed user-item interactions.
A hierarchical latent space model is utilized to learn the personalized item embedding for a given user, along with the population distribution of all user subgraphs.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed rapid developments on collaborative filtering
techniques for improving the performance of recommender systems due to the
growing need of companies to help users discover new and relevant items.
However, the majority of existing literature focuses on delivering items which
match the user model learned from users' past preferences. A good
recommendation model is expected to recommend items that are known to enjoy and
items that are novel to try. In this work, we introduce an
exploitation-exploration motivated variational auto-encoder (XploVAE) to
collaborative filtering. To facilitate personalized recommendations, we
construct user-specific subgraphs, which contain the first-order proximity
capturing observed user-item interactions for exploitation and the high-order
proximity for exploration. A hierarchical latent space model is utilized to
learn the personalized item embedding for a given user, along with the
population distribution of all user subgraphs. Finally, experimental results on
various real-world datasets clearly demonstrate the effectiveness of our
proposed model on leveraging the exploitation and exploration recommendation
tasks.
Related papers
- Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Large Language Models (LLMs) pretrained on massive text corpus presents a promising avenue for enhancing recommender systems.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Explainable Active Learning for Preference Elicitation [0.0]
We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort.
AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them.
It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying machine learning (ML) model.
arXiv Detail & Related papers (2023-09-01T09:22:33Z) - PIE: Personalized Interest Exploration for Large-Scale Recommender
Systems [0.0]
We present a framework for exploration in large-scale recommender systems to address these challenges.
Our methodology can be easily integrated into an existing large-scale recommender system with minimal modifications.
Our work has been deployed in production on Facebook Watch, a popular video discovery and sharing platform serving billions of users.
arXiv Detail & Related papers (2023-04-13T22:25:09Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - PARSRec: Explainable Personalized Attention-fused Recurrent Sequential
Recommendation Using Session Partial Actions [0.5801044612920815]
We propose an architecture that relies on common patterns as well as individual behaviors to tailor its recommendations for each person.
Our empirical results on Nielsen Consumer Panel dataset indicate that the proposed approach achieves up to 27.9% performance improvement.
arXiv Detail & Related papers (2022-09-16T12:07:43Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - An Empirical analysis on Transparent Algorithmic Exploration in
Recommender Systems [17.91522677924348]
We propose a new approach for feedback elicitation without any deception and compare our approach to the conventional mix-in approach for evaluation.
Our results indicated that users left significantly more feedback on items chosen for exploration with our interface.
arXiv Detail & Related papers (2021-07-31T05:08:29Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
Research in recommendation has shifted to inventing new recommender models based on neural networks.
In recent years, we have witnessed significant progress in developing neural recommender models.
arXiv Detail & Related papers (2021-04-27T08:03:52Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.