The dynamical quantum Zeno effect in quantum decision theory
- URL: http://arxiv.org/abs/2006.03620v1
- Date: Fri, 5 Jun 2020 18:21:59 GMT
- Title: The dynamical quantum Zeno effect in quantum decision theory
- Authors: R. Rossi Jr
- Abstract summary: It is show in this paper that the belief-action entanglement model provides a mathematical framework for the dynamical quantum Zeno effect in quantum decision theory.
It is also shown that, in this context, the dynamical account implies that opinion change process can be inhibited by frequent evaluations of intentions to act.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper it is proposed the dynamical quantum Zeno Effect in quantum
decision theory. The measurement postulate is not an essential ingredient for
the explanation of the quantum Zeno effect, a dynamical account is given in
quantum physics. In this account, the entanglement between the system of
interest and the apparatus inhibit the quantum transition. The collapse
postulate is not considered. It is show in this paper that the belief-action
entanglement model provides a mathematical framework for the dynamical quantum
Zeno effect in quantum decision theory. It is also shown that, in this context
the dynamical account implies that opinion change process can be inhibited by
frequent evaluations of intentions to act.
Related papers
- Quantum gravity inspired nonlocal quantum dynamics preserving the classical limit [0.03970441202645725]
Nonlocal modifications of quantum mechanics can be found at non-relativistic energies.
We show that classical limits of quantum probability densities and free energy remain unaffected up to energies comparable with the nonlocality scale.
arXiv Detail & Related papers (2024-05-24T13:33:51Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Effective information bounds in modified quantum mechanics [0.03492633112489883]
We show that quantum systems undergo corrections to the quantum speed limit which, in turn, imply the modification of the Heisenberg limit for parameter estimation.
For some nonlocal models inspired by quantum gravity, the bounds are found to oscillate in time, an effect that could be tested in future high-precision quantum experiments.
arXiv Detail & Related papers (2022-11-16T21:37:04Z) - Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity
induced minimal-length quantum mechanics [0.0]
We show that the spin operator acquires a momentum-dependent contribution in quantum mechanics equipped with a minimal length.
Among other consequences, this modification induces a form of quantum nonlocality stronger than the one arising in ordinary quantum mechanics.
arXiv Detail & Related papers (2022-07-21T11:22:33Z) - On the Common Logical Structure of Classical and Quantum Mechanics [0.0]
We show that quantum theory does satisfy the classical distributivity law once the full meaning of quantum propositions is properly taken into account.
We show that the lattice of statistical propositions in classical mechanics follows the same structure, yielding an analogue non-commutative sublattice of classical propositions.
arXiv Detail & Related papers (2022-06-21T18:31:53Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - The Relativistic Transactional Interpretation and The Quantum
Direct-Action Theory [0.0]
This paper presents key aspects of the quantum relativistic direct-action theory that underlies the Relativistic Transactional Interpretation.
It notes some crucial ways in which traditional interpretations of the direct-action theory have impeded progress in developing its quantum counterpart.
arXiv Detail & Related papers (2021-01-03T22:12:39Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.