The Relativistic Transactional Interpretation and The Quantum
Direct-Action Theory
- URL: http://arxiv.org/abs/2101.00712v2
- Date: Sat, 25 Dec 2021 05:33:34 GMT
- Title: The Relativistic Transactional Interpretation and The Quantum
Direct-Action Theory
- Authors: R. E. Kastner
- Abstract summary: This paper presents key aspects of the quantum relativistic direct-action theory that underlies the Relativistic Transactional Interpretation.
It notes some crucial ways in which traditional interpretations of the direct-action theory have impeded progress in developing its quantum counterpart.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents key aspects of the quantum relativistic direct-action
theory that underlies the Relativistic Transactional Interpretation. It notes
some crucial ways in which traditional interpretations of the direct-action
theory have impeded progress in developing its quantum counterpart.
Specifically, (1) the so-called 'light tight box' condition is re-examined and
it is shown that the quantum version of this condition is much less restrictive
than has long been assumed; and (2) the notion of a 'real photon' is
disambiguated and revised to take into account that real (on-shell) photons are
indeed both emitted and absorbed and therefore have finite lifetimes. Also
discussed is the manner in which real, physical non-unitarity naturally arises
in the quantum direct-action theory of fields, such that the measurement
transition can be clearly defined from within the theory, without reference to
external observers and without any need to modify quantum theory itself. It is
shown that field quantization arises from the non-unitary interaction.
Related papers
- Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Logical implications between fundamental properties of relativistic
quantum theories [0.0]
A consistency condition constrains any relativistic quantum theory is formulated.
It turns out to be equivalent to the locality of physics as well as, in the context of quantum field theory, microcausality.
arXiv Detail & Related papers (2023-09-14T13:47:48Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Quantum Theory Needs (And Probably Has) Real Reduction [0.0]
It appears that for quantum theory to be viable in a realist sense, it must possess genuine, physical non-unitarity.
Penrose's theory of gravitation-induced collapse and the Transactional Interpretation are discussed.
arXiv Detail & Related papers (2023-04-20T21:25:23Z) - Quantum Relativity [0.0]
A new quantum postulate is suggested to restore classical locality and causality to quantum physics.
This postulate supports the EPR view that quantum mechanics is incomplete, while also staying compatible to the Bohr view that nothing exists beyond the quantum.
arXiv Detail & Related papers (2023-02-04T02:05:25Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum resource covariance [0.0]
Since the dawn of quantum mechanics there is no consensus on what the theory is all about.
We construct a theoretical framework within which a given combination of quantum resources is shown to be a Galilean invariant.
We show that the notion of physical reality implied by quantum mechanics is not absolute.
arXiv Detail & Related papers (2020-05-19T17:34:11Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.