論文の概要: A Mathematical Picture Language Project
- arxiv url: http://arxiv.org/abs/2006.03954v1
- Date: Sat, 6 Jun 2020 19:41:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 11:15:33.061199
- Title: A Mathematical Picture Language Project
- Title(参考訳): 数学的画像言語プロジェクト
- Authors: Arthur Jaffe and Zhengwei Liu
- Abstract要約: 数学と物理学の分野を指摘し、将来有益であることが証明されることを願っている。
2016年に始まった数学的図形言語プロジェクトは、すでに興味深い成果を上げています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The mathematical picture language project that we began in 2016 has already
yielded interesting results. We also point out areas of mathematics and physics
where we hope that it will prove useful in the future.
- Abstract(参考訳): 2016年に始まった数学的ピクチャ言語プロジェクトは、すでに興味深い結果をもたらしています。
また、数学と物理学の分野を指摘し、将来それが役に立つことを望んでいる。
関連論文リスト
- MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMathは、中国語大言語モデル(LLM)を評価するための詳細な数学的評価ベンチマークデータセットである。
FineMathは、小学校数学で教えられる主要な数学的概念をカバーし、数学用語の問題の17のカテゴリに分けられる。
数学の単語問題のうち17のカテゴリは、これらの問題を解決するために必要な推論ステップの数に応じて、難易度を手動でアノテートする。
論文 参考訳(メタデータ) (2024-03-12T15:32:39Z) - Machine learning and information theory concepts towards an AI
Mathematician [77.63761356203105]
人工知能の現在の最先端技術は、特に言語習得の点で印象的だが、数学的推論の点ではあまり重要ではない。
このエッセイは、現在のディープラーニングが主にシステム1の能力で成功するという考えに基づいている。
興味深い数学的ステートメントを構成するものについて質問するために、情報理論的な姿勢を取る。
論文 参考訳(メタデータ) (2024-03-07T15:12:06Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
大規模言語モデル(LLM)は問題解決において顕著な能力を示した。
しかし、数学的な問題を解く能力は依然として不十分である。
高品質な数学的推論データを作成するためのシンプルでスケーラブルな方法であるMathScaleを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:42:59Z) - Large Language Models for Mathematicians [53.27302720305432]
大規模言語モデル(LLM)は、汎用言語理解、特に高品質なテキストやコンピュータコードを生成する能力に多大な関心を集めている。
本稿では,プロの数学者をどの程度支援できるかについて論じる。
論文 参考訳(メタデータ) (2023-12-07T18:59:29Z) - MathGloss: Building mathematical glossaries from text [0.620048328543366]
MathGlossは数学の学部概念のデータベースである。
最新の自然言語処理(NLP)ツールとWeb上で既に利用可能なリソースを使用している。
論文 参考訳(メタデータ) (2023-11-21T14:49:00Z) - Mathematical Artifacts Have Politics: The Journey from Examples to
Embedded Ethics [0.0]
数学的アーティファクトが政治を持っていることを認めることが、数学者が学生のためにより良いエクササイズを設計するのにどう役立つかを示す。
我々は、倫理を数学的カリキュラムに組み込むことの意味を示す。
論文 参考訳(メタデータ) (2023-08-09T11:09:53Z) - Tree-Based Representation and Generation of Natural and Mathematical
Language [77.34726150561087]
科学コミュニケーションと教育シナリオにおける数学的言語は重要であるが、比較的研究されている。
数学言語に関する最近の研究は、スタンドアローンな数学的表現や、事前訓練された自然言語モデルにおける数学的推論に焦点をあてている。
テキストと数学を共同で表現・生成するために,既存の言語モデルに対する一連の修正を提案する。
論文 参考訳(メタデータ) (2023-02-15T22:38:34Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Classical and intuitionistic mathematical languages shape our
understanding of time in physics [0.0]
時間進化過程に基づいて構築された直観主義数学に基づく定式化は、我々の物理的現実の経験に近い視点を提供する。
論文 参考訳(メタデータ) (2020-02-04T18:00:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。