論文の概要: Medical Concept Normalization in User Generated Texts by Learning Target
Concept Embeddings
- arxiv url: http://arxiv.org/abs/2006.04014v1
- Date: Sun, 7 Jun 2020 01:17:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 08:04:07.774352
- Title: Medical Concept Normalization in User Generated Texts by Learning Target
Concept Embeddings
- Title(参考訳): 目標概念埋め込み学習によるユーザ生成テキストの医学的概念正規化
- Authors: Katikapalli Subramanyam Kalyan, S.Sangeetha
- Abstract要約: 最近の研究は、テキスト分類またはテキストマッチングとして、正規化の概念を定めている。
提案モデルでは,入力概念の参照とターゲット概念の表現を共同で学習することで,これらの欠点を克服する。
我々のモデルは、精度を2.31%向上させることで、3つの標準データセットにまたがる既存のメソッドをすべて上回ります。
- 参考スコア(独自算出の注目度): 5.33024001730262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical concept normalization helps in discovering standard concepts in
free-form text i.e., maps health-related mentions to standard concepts in a
vocabulary. It is much beyond simple string matching and requires a deep
semantic understanding of concept mentions. Recent research approach concept
normalization as either text classification or text matching. The main drawback
in existing a) text classification approaches is ignoring valuable target
concepts information in learning input concept mention representation b) text
matching approach is the need to separately generate target concept embeddings
which is time and resource consuming. Our proposed model overcomes these
drawbacks by jointly learning the representations of input concept mention and
target concepts. First, it learns the input concept mention representation
using RoBERTa. Second, it finds cosine similarity between embeddings of input
concept mention and all the target concepts. Here, embeddings of target
concepts are randomly initialized and then updated during training. Finally,
the target concept with maximum cosine similarity is assigned to the input
concept mention. Our model surpasses all the existing methods across three
standard datasets by improving accuracy up to 2.31%.
- Abstract(参考訳): 医学的概念正規化は、自由形式のテキストにおける標準概念、すなわち健康に関連する言及を語彙の標準概念にマッピングするのに役立つ。
単純な文字列マッチングをはるかに超え、概念記述の深い意味的理解を必要とする。
最近の研究は、テキスト分類またはテキストマッチングとして、正規化の概念を定めている。
現存する主な欠点は
a) テキスト分類アプローチは、入力概念参照表現の学習において貴重な目標概念情報を無視している
b)テキストマッチングアプローチは、時間とリソース消費であるターゲット概念の埋め込みを別々に生成する必要がある。
提案モデルでは,入力概念の参照とターゲット概念の表現を共同で学習することで,これらの欠点を克服する。
まず、RoBERTaを用いた入力概念参照表現を学習する。
第二に、入力概念の埋め込みとすべての対象概念の間のコサインの類似性を見出す。
ここで、ターゲット概念の埋め込みはランダムに初期化され、トレーニング中に更新される。
最後に、最大コサイン類似度を持つターゲット概念を入力概念参照に割り当てる。
我々のモデルは、精度を2.31%向上させることで、3つの標準データセットにまたがる既存のメソッドをすべて上回ります。
関連論文リスト
- Scaling Concept With Text-Guided Diffusion Models [53.80799139331966]
概念を置き換える代わりに、概念自体を強化するか、あるいは抑圧できるだろうか?
ScalingConceptは、分解された概念を、新しい要素を導入することなく、実際の入力でスケールアップまたはスケールダウンする、シンプルで効果的な方法である。
さらに重要なのは、ScalingConceptは画像とオーディオドメインにまたがる様々な新しいゼロショットアプリケーションを可能にすることだ。
論文 参考訳(メタデータ) (2024-10-31T17:09:55Z) - Explain via Any Concept: Concept Bottleneck Model with Open Vocabulary Concepts [8.028021897214238]
OpenCBMはオープン語彙の概念を持つ最初のCBMである。
ベンチマークデータセットCUB-200-2011の分類精度は,従来のCBMよりも9%向上した。
論文 参考訳(メタデータ) (2024-08-05T06:42:00Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Non-confusing Generation of Customized Concepts in Diffusion Models [135.4385383284657]
テキスト誘導拡散モデル(TGDM)を用いた合成概念生成における概念間視覚混乱の共通課題に取り組む。
既存のカスタマイズされた生成方法は、第2ステージの微調整のみに焦点を当て、第1ステージを見下ろしている。
本稿では,CLIF(CLIF)と呼ばれる単純かつ効果的な画像言語微調整法を提案する。
論文 参考訳(メタデータ) (2024-05-11T05:01:53Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
概念に基づく説明可能なAIは、あるユーザの前提における複雑なモデルの理解を改善するツールとして期待されている。
本稿では,テキスト領域と画像領域の両方でユーザ主導のデータ収集を行うワークフローを提案する。
我々は,概念アクティベーションベクトル(CAV)と概念アクティベーション領域(CAR)の2つの概念ベース説明可能性手法を用いて,検索した概念データセットをテストする。
論文 参考訳(メタデータ) (2024-04-10T13:47:22Z) - Can we Constrain Concept Bottleneck Models to Learn Semantically Meaningful Input Features? [0.6401548653313325]
概念ボトルネックモデル(CBM)は、人間の定義した概念の集合を最初に予測するため、本質的に解釈可能であるとみなされる。
現在の文献では、概念予測は無関係な入力特徴に依存することが多いことを示唆している。
本稿では,CBMが概念を意味的に意味のある入力特徴にマッピングできることを実証する。
論文 参考訳(メタデータ) (2024-02-01T10:18:43Z) - Simple Mechanisms for Representing, Indexing and Manipulating Concepts [46.715152257557804]
我々は、概念の具体的な表現やシグネチャを生成するために、そのモーメント統計行列を見ることで概念を学ぶことができると論じる。
概念が交差しているとき、概念のシグネチャを使用して、関連する多くの相互交差した概念の共通テーマを見つけることができる。
論文 参考訳(メタデータ) (2023-10-18T17:54:29Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
テキスト・ツー・イメージ(T2I)拡散モデルはしばしば、透かしや安全でない画像のような望ましくない概念を不注意に生成する。
幾何学駆動制御に基づく新しい概念除去手法であるGeom-Erasingを提案する。
論文 参考訳(メタデータ) (2023-10-09T17:13:10Z) - DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for
Open-world Detection [118.36746273425354]
本稿では,デザインされた概念辞書から知識の豊かさを生かして,オープンワールド検出のための並列視覚概念事前学習手法を提案する。
概念をそれらの記述で豊かにすることにより、オープンドメイン学習を促進するために、さまざまな概念間の関係を明確に構築する。
提案フレームワークは、例えばLVISデータセット上で、強力なゼロショット検出性能を示し、私たちのDetCLIP-TはGLIP-Tを9.9%向上させ、レアカテゴリで13.5%改善した。
論文 参考訳(メタデータ) (2022-09-20T02:01:01Z) - FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic
descriptions, and Conceptual Relations [99.54048050189971]
自然に発生する複数のデータストリームによってガイドされる新しい視覚概念を素早く学習するフレームワークを提案する。
学習された概念は、未知の画像について推論することで質問に答えるなど、下流のアプリケーションをサポートする。
合成と実世界の両方のデータセットにおけるモデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-03-30T19:45:00Z) - A Context-based Disambiguation Model for Sentiment Concepts Using a
Bag-of-concepts Approach [0.0]
本研究では,コモンセンス知識を用いてあいまいな極性概念を解くための文脈モデルを提案する。
提案モデルは,Semevalと呼ばれる製品レビューコーパスを適用して評価する。
実験の結果,提案モデルの有効性を示す精度は82.07%であった。
論文 参考訳(メタデータ) (2020-08-07T07:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。