論文の概要: Stable Adversarial Learning under Distributional Shifts
- arxiv url: http://arxiv.org/abs/2006.04414v2
- Date: Tue, 11 May 2021 02:27:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:32:58.303699
- Title: Stable Adversarial Learning under Distributional Shifts
- Title(参考訳): 分布シフト下における安定な逆学習
- Authors: Jiashuo Liu, Zheyan Shen, Peng Cui, Linjun Zhou, Kun Kuang, Bo Li,
Yishi Lin
- Abstract要約: 経験的リスク最小化を伴う機械学習アルゴリズムは、分散シフトの下で脆弱である。
本研究では、異種データソースを活用してより実用的な不確実性セットを構築する安定適応学習(SAL)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 46.98655899839784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning algorithms with empirical risk minimization are vulnerable
under distributional shifts due to the greedy adoption of all the correlations
found in training data. Recently, there are robust learning methods aiming at
this problem by minimizing the worst-case risk over an uncertainty set.
However, they equally treat all covariates to form the decision sets regardless
of the stability of their correlations with the target, resulting in the
overwhelmingly large set and low confidence of the learner.In this paper, we
propose Stable Adversarial Learning (SAL) algorithm that leverages
heterogeneous data sources to construct a more practical uncertainty set and
conduct differentiated robustness optimization, where covariates are
differentiated according to the stability of their correlations with the
target. We theoretically show that our method is tractable for stochastic
gradient-based optimization and provide the performance guarantees for our
method. Empirical studies on both simulation and real datasets validate the
effectiveness of our method in terms of uniformly good performance across
unknown distributional shifts.
- Abstract(参考訳): 経験的リスク最小化を伴う機械学習アルゴリズムは、トレーニングデータに現れるすべての相関関係が厳格に採用されているため、分散シフトの下で脆弱である。
近年,不確実性セットに対する最悪のリスクを最小限に抑えて,この問題に対する堅牢な学習手法が提案されている。
However, they equally treat all covariates to form the decision sets regardless of the stability of their correlations with the target, resulting in the overwhelmingly large set and low confidence of the learner.In this paper, we propose Stable Adversarial Learning (SAL) algorithm that leverages heterogeneous data sources to construct a more practical uncertainty set and conduct differentiated robustness optimization, where covariates are differentiated according to the stability of their correlations with the target.
理論上,本手法は確率的勾配に基づく最適化が可能であり,提案手法の性能保証を提供する。
シミュレーションと実データセットの両方に関する実証的研究は、未知の分布シフトにおける均一な性能の観点から、我々の手法の有効性を検証する。
関連論文リスト
- The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z) - Distributionally Robust Learning with Stable Adversarial Training [34.74504615726101]
経験的リスク最小化を伴う機械学習アルゴリズムは、分散シフトの下で脆弱である。
そこで本稿では,異種データソースを活用して,より実用的な不確実性セットを構築する,SAL(Stable Adversarial Learning)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-30T03:05:45Z) - Distributionally Robust Learning in Heterogeneous Contexts [29.60681287631439]
異なる文脈で得られたトレーニングデータから学習する問題を検討し、テストデータは分布シフトの影響を受けます。
我々は,超過リスクに着目した分散ロバストな手法を開発し,従来の超保守的ミニマックスアプローチよりもパフォーマンスとロバスト性のトレードオフをより適切なものにする。
論文 参考訳(メタデータ) (2021-05-18T14:00:34Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - A Stochastic Subgradient Method for Distributionally Robust Non-Convex
Learning [2.007262412327553]
堅牢性は、基礎となるデータ分布の不確実性に関するものです。
本手法は摂動条件を満たすことに収束することを示す。
また、実際のデータセット上でのアルゴリズムの性能についても解説する。
論文 参考訳(メタデータ) (2020-06-08T18:52:40Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。