論文の概要: A Stochastic Subgradient Method for Distributionally Robust Non-Convex
Learning
- arxiv url: http://arxiv.org/abs/2006.04873v3
- Date: Tue, 8 Jun 2021 01:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 02:53:00.444317
- Title: A Stochastic Subgradient Method for Distributionally Robust Non-Convex
Learning
- Title(参考訳): 分布ロバストな非凸学習のための確率的漸進法
- Authors: Mert G\"urb\"uzbalaban, Andrzej Ruszczy\'nski and Landi Zhu
- Abstract要約: 堅牢性は、基礎となるデータ分布の不確実性に関するものです。
本手法は摂動条件を満たすことに収束することを示す。
また、実際のデータセット上でのアルゴリズムの性能についても解説する。
- 参考スコア(独自算出の注目度): 2.007262412327553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a distributionally robust formulation of stochastic optimization
problems arising in statistical learning, where robustness is with respect to
uncertainty in the underlying data distribution. Our formulation builds on
risk-averse optimization techniques and the theory of coherent risk measures.
It uses semi-deviation risk for quantifying uncertainty, allowing us to compute
solutions that are robust against perturbations in the population data
distribution. We consider a large family of loss functions that can be
non-convex and non-smooth and develop an efficient stochastic subgradient
method. We prove that it converges to a point satisfying the optimality
conditions. To our knowledge, this is the first method with rigorous
convergence guarantees in the context of non-convex non-smooth distributionally
robust stochastic optimization. Our method can achieve any desired level of
robustness with little extra computational cost compared to population risk
minimization. We also illustrate the performance of our algorithm on real
datasets arising in convex and non-convex supervised learning problems.
- Abstract(参考訳): 本稿では,統計的学習における確率的最適化問題の分布的ロバストな定式化について考察する。
本定式化はリスク回避最適化手法とコヒーレントリスク測度の理論に基づいている。
半減算リスクを用いて不確実性を定量化し、人口データ分布の摂動に対して堅牢な解を計算する。
非凸かつ非スムースな損失関数の大規模な族を考察し,効率的な確率的劣次法を考案する。
最適条件を満たす点に収束することが証明される。
我々の知る限りでは、これは非凸非スムース分布にロバストな確率的最適化の文脈において厳密な収束保証を持つ最初の方法である。
本手法は,集団リスクの最小化に比べて計算コストの増大を伴わず,任意の強靭性を実現することができる。
また,convexおよびnon-convex教師付き学習問題における実データセットに対するアルゴリズムの性能について述べる。
関連論文リスト
- Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets [18.46110328123008]
非破壊仮説テスト問題に対処する新しい枠組みを提案する。
目標は、最大数値リスクを最小限に抑える最適な検出器を探すことである。
論文 参考訳(メタデータ) (2024-03-21T20:29:43Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
機械学習と統計モデルのトレーニングは、しばしばデータ駆動型リスク基準の最適化を伴う。
ベイズ的非パラメトリック(ディリクレ過程)理論と、スムーズなあいまいさ-逆選好の最近の決定論的モデルを組み合わせた、新しいロバストな基準を提案する。
実用的な実装として、よく知られたディリクレプロセスの表現に基づいて、評価基準の抽出可能な近似を提案し、研究する。
論文 参考訳(メタデータ) (2024-01-28T21:19:15Z) - Pitfall of Optimism: Distributional Reinforcement Learning by
Randomizing Risk Criterion [9.35556128467037]
本稿では,リスクの一方的な傾向を避けるために,リスク基準のランダム化によって行動を選択する新しい分散強化学習アルゴリズムを提案する。
理論的結果は,提案手法がバイアス探索に該当せず,最適回帰に収束することが保証されていることを裏付けるものである。
論文 参考訳(メタデータ) (2023-10-25T10:53:04Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Distributionally Robust Learning with Stable Adversarial Training [34.74504615726101]
経験的リスク最小化を伴う機械学習アルゴリズムは、分散シフトの下で脆弱である。
そこで本稿では,異種データソースを活用して,より実用的な不確実性セットを構築する,SAL(Stable Adversarial Learning)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-30T03:05:45Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Stable Adversarial Learning under Distributional Shifts [46.98655899839784]
経験的リスク最小化を伴う機械学習アルゴリズムは、分散シフトの下で脆弱である。
本研究では、異種データソースを活用してより実用的な不確実性セットを構築する安定適応学習(SAL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-08T08:42:34Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
一定対向分数の存在下でのロバスト平均推定の問題は勾配降下によって解けることを示す。
我々の研究は、近辺の非補題推定とロバスト統計の間の興味深い関係を確立する。
論文 参考訳(メタデータ) (2020-05-04T10:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。