Coherence of a field-gradient-driven singlet-triplet qubit coupled to
many-electron spin states in 28Si/SiGe
- URL: http://arxiv.org/abs/2310.12603v2
- Date: Wed, 25 Oct 2023 12:49:21 GMT
- Title: Coherence of a field-gradient-driven singlet-triplet qubit coupled to
many-electron spin states in 28Si/SiGe
- Authors: Younguk Song, Jonginn Yun, Jehyun Kim, Wonjin Jang, Hyeongyu Jang,
Jaemin Park, Min-Kyun Cho, Hanseo Sohn, Noritaka Usami, Satoru Miyamoto,
Kohei M. Itoh, Dohun Kim
- Abstract summary: Engineered spin-electric coupling enables spin qubits in semiconductor nanostructures to be manipulated efficiently and addressed individually.
We demonstrate fast singlet-triplet qubit oscillation in a gate-defined double quantum dot in $28$Si/SiGe with an on-chip micromagnet.
We present evidence of sizable and coherent coupling of the qubit with the spin states of a nearby quantum dot, demonstrating that appropriate spin-electric coupling may enable a charge-based two-qubit gate in a (1,1) charge configuration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Engineered spin-electric coupling enables spin qubits in semiconductor
nanostructures to be manipulated efficiently and addressed individually. While
synthetic spin-orbit coupling using a micromagnet is widely used for driving
qubits based on single spins in silicon, corresponding demonstration for
encoded spin qubits is so far limited to natural silicon. Here, we demonstrate
fast singlet-triplet qubit oscillation (~100 MHz) in a gate-defined double
quantum dot in $^{28}$Si/SiGe with an on-chip micromagnet with which we show
the oscillation quality factor of an encoded spin qubit exceeding 580. The
coherence time $\textit{T}_{2}$* is analyzed as a function of potential
detuning and an external magnetic field. In weak magnetic fields, the coherence
is limited by fast noise compared to the data acquisition time, which limits
$\textit{T}_{2}$* < 1 ${\mu}$s in the ergodic limit. We present evidence of
sizable and coherent coupling of the qubit with the spin states of a nearby
quantum dot, demonstrating that appropriate spin-electric coupling may enable a
charge-based two-qubit gate in a (1,1) charge configuration.
Related papers
- Strong coupling between a microwave photon and a singlet-triplet qubit [0.0]
We introduce a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator.
Experiments on even charge parity states and at large magnetic fields allow to identify the relevant spin states.
Results pave the way towards large-scale quantum system based on singlet-triplet qubits.
arXiv Detail & Related papers (2023-03-29T16:20:24Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - The remarkable prospect for quantum-dot-coupled tin qubits in silicon [0.0]
Tin is isoelectronic with silicon, so electrons can easily shuttle from one Sn atom to another to propagate quantum information.
A hyperfine-induced electro-nuclear controlled-phase gate operation is predicted to be exceptionally resilient to charge/voltage noise.
arXiv Detail & Related papers (2022-06-13T16:16:07Z) - Five-second coherence of a single spin with single-shot readout in
silicon carbide [84.97423065534817]
We demonstrate single-shot readout of single defects in silicon carbide (SiC)
We achieve over 80% readout fidelity without pre- or post-selection.
We report single spin T2 > 5s, over two orders of magnitude greater than previously reported in this system.
arXiv Detail & Related papers (2021-10-04T17:35:02Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z) - Single-qubit remote manipulation by magnetic solitons [62.997667081978825]
Magnetic solitons can constitute a means for manipulating qubits from a distance.
When a suitable soliton passes by, the coupled qubit undergoes nontrivial operations.
arXiv Detail & Related papers (2021-04-07T08:28:49Z) - A silicon singlet-triplet qubit driven by spin-valley coupling [0.0]
We demonstrate a novel singlet-triplet qubit operating mode that can drive qubit evolution at frequencies in excess of 200 MHz.
This approach offers a means to electrically turn on and off fast control, while providing high logic gateity and long qubit dephasing times.
arXiv Detail & Related papers (2021-02-24T05:00:07Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.