論文の概要: Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems
- arxiv url: http://arxiv.org/abs/2006.04527v1
- Date: Tue, 2 Jun 2020 18:51:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 00:11:39.792129
- Title: Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems
- Title(参考訳): 高次元逆問題に対する客観的主成分分析
- Authors: Maksim Elizarev, Andrei Mukhin and Aleksey Khlyupin
- Abstract要約: 本稿では,大規模乱数場の適応的,微分可能なパラメータ化手法を提案する。
開発した手法は主成分分析(PCA)に基づくが,目的関数の振る舞いを考慮した主成分の純粋にデータ駆動に基づく基礎を変更する。
最適パラメータ分解のための3つのアルゴリズムを2次元合成履歴マッチングの目的に適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel approach for adaptive, differentiable parameterization of
large-scale random fields. If the approach is coupled with any gradient-based
optimization algorithm, it can be applied to a variety of optimization
problems, including history matching. The developed technique is based on
principal component analysis (PCA) but modifies a purely data-driven basis of
principal components considering objective function behavior. To define an
efficient encoding, Gradient-Sensitive PCA uses an objective function gradient
with respect to model parameters. We propose computationally efficient
implementations of the technique, and two of them are based on stationary
perturbation theory (SPT). Optimality, correctness, and low computational costs
of the new encoding approach are tested, verified, and discussed. Three
algorithms for optimal parameter decomposition are presented and applied to an
objective of 2D synthetic history matching. The results demonstrate
improvements in encoding quality regarding objective function minimization and
distributional patterns of the desired field. Possible applications and
extensions are proposed.
- Abstract(参考訳): 本稿では,大規模乱数場の適応的,微分可能なパラメータ化手法を提案する。
アプローチが勾配に基づく最適化アルゴリズムと結合されている場合、履歴マッチングを含む様々な最適化問題に適用できる。
開発した手法は主成分分析(PCA)に基づくが,目的関数の振る舞いを考慮した主成分の純粋にデータ駆動に基づく基礎を変更する。
効率的な符号化を定義するために、Gradient-Sensitive PCAはモデルパラメータに対する目的関数勾配を使用する。
本稿では, 定常摂動理論(SPT)に基づいて, 計算効率の良い手法の実装を提案する。
新しい符号化手法の最適性、正確性、低い計算コストを検証し、検証し、議論した。
最適パラメータ分解のための3つのアルゴリズムを2次元合成履歴マッチングの目的に適用した。
その結果,目的関数最小化および所望フィールドの分布パターンに関する符号化品質が向上した。
可能なアプリケーションと拡張が提案されている。
関連論文リスト
- Multi-objective Memetic Algorithm with Adaptive Weights for Inverse Antenna Design [0.0]
単目的のアルゴリズムを多目的のアルゴリズムに変更すること。
その結果、数十から数百の速度が大幅に増加する。
論文 参考訳(メタデータ) (2024-08-07T08:43:38Z) - Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes [0.0]
トポロジ最適化(TO)は、その物質空間分布を予め定義された領域で設計し、制約の集合に従うことによって、構造の性能を最適化する原理的な数学的アプローチを提供する。
我々は,ガウス過程(GP)の枠組みに基づく新しいTO手法を開発し,その平均関数はディープニューラルネットワークを介してパラメータ化される。
本手法を商用ソフトウェアに実装した従来のTO手法に対して検証するため,ストークスフローにおける消散電力の最小化を含む4つの問題に対して評価を行った。
論文 参考訳(メタデータ) (2024-08-07T01:01:35Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
機械学習における制約付き最適化問題の一家系を考察する。
我々のキーとなる考え方は、閾値パラメータをモデルパラメータの関数として表現するレート制約のある最適化を定式化することである。
本稿では, 標準勾配法を用いて, 結果の最適化問題を解く方法を示す。
論文 参考訳(メタデータ) (2021-07-23T00:04:39Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
強靭なトポロジー最適化(RTO)問題は、最高の平均性能を持つ設計を特定する。
計算効率を向上するニューラルネットワーク手法を提案する。
本手法の数値解析は,Lブラケット構造のロバスト設計における単一点負荷と複数点負荷について述べる。
論文 参考訳(メタデータ) (2021-07-19T20:40:51Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Logistic Q-Learning [87.00813469969167]
MDPにおける最適制御の正規化線形プログラミング定式化から導いた新しい強化学習アルゴリズムを提案する。
提案アルゴリズムの主な特徴は,広範に使用されているベルマン誤差の代わりとして理論的に音声として機能する,政策評価のための凸損失関数である。
論文 参考訳(メタデータ) (2020-10-21T17:14:31Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - On the implementation of a global optimization method for mixed-variable
problems [0.30458514384586394]
このアルゴリズムは、グットマンの放射基底関数と、レジスとシューメーカーの計量応答面法に基づいている。
これら2つのアルゴリズムの一般化と改良を目的としたいくつかの修正を提案する。
論文 参考訳(メタデータ) (2020-09-04T13:36:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。