論文の概要: Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes
- arxiv url: http://arxiv.org/abs/2408.03490v1
- Date: Wed, 7 Aug 2024 01:01:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 14:16:39.510127
- Title: Simultaneous and Meshfree Topology Optimization with Physics-informed Gaussian Processes
- Title(参考訳): 物理インフォームドガウス過程を用いた同時・メッシュフリートポロジー最適化
- Authors: Amin Yousefpour, Shirin Hosseinmardi, Carlos Mora, Ramin Bostanabad,
- Abstract要約: トポロジ最適化(TO)は、その物質空間分布を予め定義された領域で設計し、制約の集合に従うことによって、構造の性能を最適化する原理的な数学的アプローチを提供する。
我々は,ガウス過程(GP)の枠組みに基づく新しいTO手法を開発し,その平均関数はディープニューラルネットワークを介してパラメータ化される。
本手法を商用ソフトウェアに実装した従来のTO手法に対して検証するため,ストークスフローにおける消散電力の最小化を含む4つの問題に対して評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topology optimization (TO) provides a principled mathematical approach for optimizing the performance of a structure by designing its material spatial distribution in a pre-defined domain and subject to a set of constraints. The majority of existing TO approaches leverage numerical solvers for design evaluations during the optimization and hence have a nested nature and rely on discretizing the design variables. Contrary to these approaches, herein we develop a new class of TO methods based on the framework of Gaussian processes (GPs) whose mean functions are parameterized via deep neural networks. Specifically, we place GP priors on all design and state variables to represent them via parameterized continuous functions. These GPs share a deep neural network as their mean function but have as many independent kernels as there are state and design variables. We estimate all the parameters of our model in a single for loop that optimizes a penalized version of the performance metric where the penalty terms correspond to the state equations and design constraints. Attractive features of our approach include $(1)$ having a built-in continuation nature since the performance metric is optimized at the same time that the state equations are solved, and $(2)$ being discretization-invariant and accommodating complex domains and topologies. To test our method against conventional TO approaches implemented in commercial software, we evaluate it on four problems involving the minimization of dissipated power in Stokes flow. The results indicate that our approach does not need filtering techniques, has consistent computational costs, and is highly robust against random initializations and problem setup.
- Abstract(参考訳): トポロジ最適化(TO)は、その物質空間分布を予め定義された領域で設計し、制約の集合に従うことによって、構造の性能を最適化する原理的な数学的アプローチを提供する。
既存のTOアプローチの大部分は、最適化中の設計評価に数値解法を利用しており、ネストした性質を持ち、設計変数の離散化に依存している。
これらのアプローチとは対照的に、我々は、深いニューラルネットワークを介して平均関数をパラメータ化するガウス過程(GP)の枠組みに基づくTOメソッドの新しいクラスを開発する。
具体的には、GPプリエントを全ての設計変数と状態変数に配置し、パラメータ化連続関数で表現する。
これらのGPは、ニューラルネットワークを平均関数として共有するが、状態変数や設計変数が存在する限り多くの独立したカーネルを持つ。
我々は、ペナルティ項が状態方程式と設計制約に対応する性能指標のペナルティ化バージョンを最適化する単一forループで、我々のモデルの全てのパラメータを推定する。
我々のアプローチの魅力的な特徴は、状態方程式が解けると同時に性能指標が最適化されるため、組込み連続性を持つ$(1)$、離散化不変で複雑なドメインやトポロジーを収容する$(2)$である。
商用ソフトウェアで実装された従来のTO手法に対して本手法を検証するため,ストークスフローにおける消散電力の最小化を含む4つの問題に対して評価を行った。
その結果,本手法はフィルタリング技術は必要とせず,一貫した計算コストを有し,ランダム初期化や問題設定に対して非常に堅牢であることがわかった。
関連論文リスト
- Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design [0.0]
本稿では, 鉄筋コンクリート(RC)構造物の設計最適化のためのメタヒューリスティック手法のパラメータを調整するためのいくつかの手法を提案する。
平均性能曲線の下での面積に基づいて, 実用性指標を提案する。
論文 参考訳(メタデータ) (2021-10-12T17:34:39Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
強靭なトポロジー最適化(RTO)問題は、最高の平均性能を持つ設計を特定する。
計算効率を向上するニューラルネットワーク手法を提案する。
本手法の数値解析は,Lブラケット構造のロバスト設計における単一点負荷と複数点負荷について述べる。
論文 参考訳(メタデータ) (2021-07-19T20:40:51Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
本稿では,大規模乱数場の適応的,微分可能なパラメータ化手法を提案する。
開発した手法は主成分分析(PCA)に基づくが,目的関数の振る舞いを考慮した主成分の純粋にデータ駆動に基づく基礎を変更する。
最適パラメータ分解のための3つのアルゴリズムを2次元合成履歴マッチングの目的に適用した。
論文 参考訳(メタデータ) (2020-06-02T18:51:17Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Bayesian optimization of variable-size design space problems [0.0]
このタイプの最適化問題を解決するために,ベイズ最適化に基づく2つのアプローチが提案されている。
最初のアプローチは、最も有望な設計サブスペースに計算予算を集中させるための予算配分戦略である。
第二のアプローチは、部分的に異なる変数の集合によって特徴づけられるサンプル間の共分散を計算することができるカーネル関数の定義に基づいている。
論文 参考訳(メタデータ) (2020-03-06T16:30:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。