論文の概要: Investigation Into the Viability of Neural Networks as a Means for
Anomaly Detection in Experiments Like Atlas at the LHC
- arxiv url: http://arxiv.org/abs/2006.04533v1
- Date: Fri, 29 May 2020 02:45:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 00:08:23.258558
- Title: Investigation Into the Viability of Neural Networks as a Means for
Anomaly Detection in Experiments Like Atlas at the LHC
- Title(参考訳): LHCにおけるアトラスのような実験における異常検出のためのニューラルネットワークの有効性の検討
- Authors: Sully Billingsley
- Abstract要約: LHCにおけるアトラス実験における異常検出の手段としてのニューラルネットワークの有効性の検討
データは標準モデルおよび標準モデルイベントを複製することを目的としている。
効果的なモデルを見つけることで、Atlas実験はより効果的になり、興味深いイベントがほとんど失われる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Petabytes of data are generated at the Atlas experiment at the Large Hadron
Collider however not all of it is necessarily interesting, so what do we do
with all of this data and how do we find these interesting needles in an
uninteresting haystack. This problem can possibly be solved through the process
of anomaly detection. In this document, Investigation Into the Viability of
Neural Networks as a Means for Anomaly Detection in Experiments Like Atlas at
the LHC the effectiveness of different types of neural network architectures as
anomaly detectors are researched using Monte Carlo simulated data generated by
the DarkMachines project. This data is meant to replicate Standard Model and
Beyond Standard Model events. By finding an effective model, the Atlas
experiment can become more effective and fewer interesting events will be lost.
- Abstract(参考訳): しかしLarge Hadron ColliderのAtlas実験では、ペタバイトのデータが生成されるが、これらすべてが必ずしも興味深いわけではない。
この問題は異常検出のプロセスによって解決することができる。
本論文では,実験における異常検出の手段としてのニューラルネットワークの実用性について,DarkMachinesプロジェクトによって生成されたモンテカルロシミュレーションデータを用いて,AtlasのようなLHCのニューラルネットワークアーキテクチャの有効性について検討する。
このデータは、Standard ModelとBeyond Standard Modelイベントの複製を目的としている。
効果的なモデルを見つけることで、Atlas実験はより効果的になり、興味深いイベントがほとんど失われる。
関連論文リスト
- Multi-Class Deep SVDD: Anomaly Detection Approach in Astronomy with
Distinct Inlier Categories [46.34797489552547]
我々は,異なるデータ分布を持つ複数の不整合カテゴリを扱うために,MCDSVDD(Multi-class Deep Support Vector Data Description)を提案する。
MCDSVDDはニューラルネットワークを使用してデータをハイパースフィアにマッピングする。
以上の結果から, 異常源の検出にMDCSVDDが有効であることが示唆された。
論文 参考訳(メタデータ) (2023-08-09T15:10:53Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - A Novel Explainable Out-of-Distribution Detection Approach for Spiking
Neural Networks [6.100274095771616]
この研究は、スパイキングニューラルネットワークに入力されたテスト例がトレーニングされたデータの分布に属するかどうかを識別できる新しいOoD検出器を提案する。
我々は、スパイクカウントパターンの形で、ネットワークの隠蔽層の内部活性化を特徴付ける。
入力インスタンスのどの部分が最もOoDサンプルとして検出されるかを明らかにする属性マップを作成するために,局所的な説明法が考案された。
論文 参考訳(メタデータ) (2022-09-30T11:16:35Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Anomaly Detection using Capsule Networks for High-dimensional Datasets [0.0]
本研究では, カプセルネットワークを用いて異常検出を行う。
我々の知る限りでは、これはカプセルネットワークが高次元複素データ設定における異常検出タスクのために解析される最初の事例である。
論文 参考訳(メタデータ) (2021-12-27T05:07:02Z) - Deep Visual Anomaly detection with Negative Learning [18.79849041106952]
本稿では、異常検出の強化に負の学習概念を用いる、負の学習を伴う異常検出(ADNL)を提案する。
その考え方は、与えられた少数の異常例を用いて生成モデルの再構成能力を制限することである。
このようにして、ネットワークは通常のデータを再構築することを学ぶだけでなく、異常の可能性のある分布から遠く離れた正規分布を囲む。
論文 参考訳(メタデータ) (2021-05-24T01:48:44Z) - The Deep Radial Basis Function Data Descriptor (D-RBFDD) Network: A
One-Class Neural Network for Anomaly Detection [7.906608953906889]
異常検出は機械学習において難しい問題である。
放射状基底関数データ記述子(rbfdd)ネットワークは異常検出に有効なソリューションである。
本稿では,RBFDDネットワークを改良して深層一級分類器に変換する手法について検討する。
論文 参考訳(メタデータ) (2021-01-29T15:15:17Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
トレーニングで必ずしも異常に遭遇しない教師なしの学習方法は、非常に有用です。
ジャイロプレーン層を用いた立体投影による超球形変分オートエンコーダ(VAE)を開発した。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
論文 参考訳(メタデータ) (2020-06-19T20:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。