論文の概要: Motion Prediction using Trajectory Sets and Self-Driving Domain
Knowledge
- arxiv url: http://arxiv.org/abs/2006.04767v2
- Date: Wed, 13 Jan 2021 20:41:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:04:18.105971
- Title: Motion Prediction using Trajectory Sets and Self-Driving Domain
Knowledge
- Title(参考訳): 軌跡集合と自律領域知識を用いた動き予測
- Authors: Freddy A. Boulton and Elena Corina Grigore and Eric M. Wolff
- Abstract要約: 我々は,オフロード予測をペナルティ化する補助的損失を加えることによって,動作予測に対する分類に基づくアプローチを構築した。
この補助損失は、地図情報のみを使用して容易に事前訓練でき、小さなデータセットの性能を大幅に向上させる。
最後のコントリビューションは、2つの公用自動運転データセットの分類と順序回帰の詳細な比較である。
- 参考スコア(独自算出の注目度): 3.0938904602244355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the future motion of vehicles has been studied using various
techniques, including stochastic policies, generative models, and regression.
Recent work has shown that classification over a trajectory set, which
approximates possible motions, achieves state-of-the-art performance and avoids
issues like mode collapse. However, map information and the physical
relationships between nearby trajectories is not fully exploited in this
formulation. We build on classification-based approaches to motion prediction
by adding an auxiliary loss that penalizes off-road predictions. This auxiliary
loss can easily be pretrained using only map information (e.g., off-road area),
which significantly improves performance on small datasets. We also investigate
weighted cross-entropy losses to capture spatial-temporal relationships among
trajectories. Our final contribution is a detailed comparison of classification
and ordinal regression on two public self-driving datasets.
- Abstract(参考訳): 車両の将来の動きを予測するには、確率的ポリシー、生成モデル、回帰など様々な手法が研究されている。
近年の研究では、運動を近似する軌道集合上の分類が最先端のパフォーマンスを達成し、モード崩壊のような問題を回避することが示されている。
しかし, この定式化では, 地図情報や周辺軌道間の物理的関係が十分に活用されない。
オフロード予測をペナライズする補助損失を追加することで,動作予測に対する分類に基づくアプローチを構築する。
この補助損失は、地図情報(例えばオフロードエリア)のみを使用して容易に事前訓練することができ、小さなデータセットのパフォーマンスを大幅に向上させる。
また, 重み付きクロスエントロピー損失について検討し, 軌道間の空間的・時間的関係を捉えた。
最後の貢献は、2つの公的な自動運転データセットの分類と順序回帰の詳細な比較です。
関連論文リスト
- Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking [7.9449756510822915]
TrajImputeは、観測された軌道の座標をシミュレートする歩行者軌道予測データセットである。
本研究では,欠落した座標を再構築するためのいくつかの計算手法について検討し,歩行者軌道の計算のためのベンチマークを行う。
本データセットは,今後の歩行者軌跡予測研究の基盤となる資料を提供する。
論文 参考訳(メタデータ) (2024-10-31T19:42:42Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Comparison of Pedestrian Prediction Models from Trajectory and
Appearance Data for Autonomous Driving [13.126949982768505]
歩行者の動きを予測できる能力は、自動運転車にとって重要な能力である。
都市環境では、歩行者は道路エリアに入り、運転のリスクが高い。
本研究は,歩行者予測のための軌跡のみと外観に基づく手法の比較評価を行う。
論文 参考訳(メタデータ) (2023-05-25T11:24:38Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss [1.1470070927586014]
本稿では,全ての予測モードにおいて予測駆動ルールを強制することにより,軌道予測モデルを強化する損失関数を提案する。
軌道予測への我々の貢献は2倍であり、オフロードレート計量の故障事例に対処する新しい指標を提案する。
次に、この補助損失を用いて、MTP(Multiple trajectory Prediction)モデルとMultiPathモデルを拡張する。
論文 参考訳(メタデータ) (2020-11-12T22:51:25Z) - Ellipse Loss for Scene-Compliant Motion Prediction [12.446392441065065]
本研究では,シーンコンプライアンスをよりよく推論し,より現実的な軌跡を予測できる新しい楕円損失を提案する。
楕円損失は、出力軌跡をトップダウンマップフレームに投影することにより、教師付き方法でオフロード予測を直接ペナルティ化する。
アクターの寸法と方向を考慮に入れ、モデルにより直接的なトレーニング信号を提供する。
論文 参考訳(メタデータ) (2020-11-05T23:33:56Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
本研究は、現実の運転シナリオにおける周辺車両の今後の行動の順序を予測する問題について研究する。
最初のコントリビューションは、現実世界の運転シナリオに記録された軌跡をHDマップの助けを借りてアクションシーケンスに変換する自動手法である。
第2のコントリビューションは、よく知られたトラフィックエージェント追跡と予測データセットArgoverseへのメソッドの適用であり、結果として228,000のアクションシーケンスが生成される。
第3のコントリビューションは,交通エージェント,地図情報,社会状況の過去の位置と速度を,単一エンドツーエンドのトレーニング可能なニューラルネットワークに統合して,新たな行動シーケンス予測手法を提案することである。
論文 参考訳(メタデータ) (2020-04-29T14:59:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。