論文の概要: Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking
- arxiv url: http://arxiv.org/abs/2411.00174v1
- Date: Thu, 31 Oct 2024 19:42:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:52.025962
- Title: Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking
- Title(参考訳): 欠落データを用いた歩行者軌道予測:データセット、インプット、ベンチマーク
- Authors: Pranav Singh Chib, Pravendra Singh,
- Abstract要約: TrajImputeは、観測された軌道の座標をシミュレートする歩行者軌道予測データセットである。
本研究では,欠落した座標を再構築するためのいくつかの計算手法について検討し,歩行者軌道の計算のためのベンチマークを行う。
本データセットは,今後の歩行者軌跡予測研究の基盤となる資料を提供する。
- 参考スコア(独自算出の注目度): 7.9449756510822915
- License:
- Abstract: Pedestrian trajectory prediction is crucial for several applications such as robotics and self-driving vehicles. Significant progress has been made in the past decade thanks to the availability of pedestrian trajectory datasets, which enable trajectory prediction methods to learn from pedestrians' past movements and predict future trajectories. However, these datasets and methods typically assume that the observed trajectory sequence is complete, ignoring real-world issues such as sensor failure, occlusion, and limited fields of view that can result in missing values in observed trajectories. To address this challenge, we present TrajImpute, a pedestrian trajectory prediction dataset that simulates missing coordinates in the observed trajectory, enhancing real-world applicability. TrajImpute maintains a uniform distribution of missing data within the observed trajectories. In this work, we comprehensively examine several imputation methods to reconstruct the missing coordinates and benchmark them for imputing pedestrian trajectories. Furthermore, we provide a thorough analysis of recent trajectory prediction methods and evaluate the performance of these models on the imputed trajectories. Our experimental evaluation of the imputation and trajectory prediction methods offers several valuable insights. Our dataset provides a foundational resource for future research on imputation-aware pedestrian trajectory prediction, potentially accelerating the deployment of these methods in real-world applications. Publicly accessible links to the datasets and code files are available at https://github.com/Pranav-chib/TrajImpute.
- Abstract(参考訳): 歩行者の軌道予測は、ロボティクスや自動運転車といったいくつかの応用に不可欠である。
歩行者の過去の動きから軌道予測法を学習し、将来の軌道予測を可能にする歩行者軌道データセットが利用可能になったことで、過去10年間に重要な進展が見られた。
しかしながら、これらのデータセットや方法は通常、観測された軌道列が完全であると仮定し、観測された軌道の値が失われる可能性のあるセンサーの故障、閉塞、限られた視野といった現実世界の問題を無視している。
この課題に対処するために、TrajImputeという歩行者軌道予測データセットを紹介し、観測された軌道の座標の欠如をシミュレートし、現実の応用性を高める。
TrajImputeは、観測された軌跡内の欠落データの均一な分布を維持している。
本研究では,欠落した座標を再構築するためのいくつかの計算手法を網羅的に検討し,歩行者軌道の計算のためのベンチマークを行う。
さらに,近年の軌道予測手法の徹底的な解析を行い,これらのモデルの性能評価を行った。
提案手法を実験的に評価した結果,いくつかの重要な知見が得られた。
提案データセットは,提案手法の実際の応用への展開を加速させる可能性があり,提案手法の歩行者軌道予測に関する今後の研究の基盤となる資源を提供する。
データセットとコードファイルへのパブリックアクセスリンクはhttps://github.com/Pranav-chib/TrajImpute.comで公開されている。
関連論文リスト
- Pedestrian Motion Prediction Using Transformer-based Behavior Clustering and Data-Driven Reachability Analysis [1.8963583458350768]
本稿では,過去の軌跡データに基づいて,将来の歩行者状態を予測するためのトランスフォーマーベースのフレームワークを提案する。
階層的密度に基づくクラスタリングと組み合わされた変換器エンコーダを用いて、多様な行動パターンを自動的に識別する。
これらの行動クラスタは、歩行者の将来の動きを予測するために、エンドツーエンドのデータ駆動アプローチによって、データ駆動の到達可能性分析に使用できることを示す。
論文 参考訳(メタデータ) (2024-08-09T07:24:30Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Comparison of Pedestrian Prediction Models from Trajectory and
Appearance Data for Autonomous Driving [13.126949982768505]
歩行者の動きを予測できる能力は、自動運転車にとって重要な能力である。
都市環境では、歩行者は道路エリアに入り、運転のリスクが高い。
本研究は,歩行者予測のための軌跡のみと外観に基づく手法の比較評価を行う。
論文 参考訳(メタデータ) (2023-05-25T11:24:38Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
軌道予測のための自己教師付き事前学習方式であるPreTraMを提案する。
1) トラジェクティブ・マップ・コントラクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)の2つのパートから構成される。
AgentFormerやTrajectron++といった一般的なベースラインに加えて、PreTraMは、挑戦的なnuScenesデータセット上で、FDE-10でパフォーマンスを5.5%と6.9%向上させる。
論文 参考訳(メタデータ) (2022-04-21T23:01:21Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - Towards Robust Human Trajectory Prediction in Raw Videos [8.301214274565819]
生ビデオにおける人間の軌道予測の問題について検討する。
予測精度は,種々のトラッキングエラーの影響を受けやすいことを示す。
本稿では,予測整合性を時間とともに強制することにより,トラッキング障害を修正するための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2021-08-18T17:27:26Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Vehicle predictive trajectory patterns from isochronous data [0.0]
本稿では,ビデオ,ArduinoUno,コンパスセンサHDMM01からのデータ融合を用いて,グラーツ(オーストリア)における等時軌道パターンの評価とマッピングを行う。
本研究は, 軌道パターンが現在の軌道パターンの進化を予測することに成功し, 将来の走行状況を評価することができることを示した。
論文 参考訳(メタデータ) (2020-10-10T15:17:19Z) - Motion Prediction using Trajectory Sets and Self-Driving Domain
Knowledge [3.0938904602244355]
我々は,オフロード予測をペナルティ化する補助的損失を加えることによって,動作予測に対する分類に基づくアプローチを構築した。
この補助損失は、地図情報のみを使用して容易に事前訓練でき、小さなデータセットの性能を大幅に向上させる。
最後のコントリビューションは、2つの公用自動運転データセットの分類と順序回帰の詳細な比較である。
論文 参考訳(メタデータ) (2020-06-08T17:37:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。