論文の概要: A Modified AUC for Training Convolutional Neural Networks: Taking
Confidence into Account
- arxiv url: http://arxiv.org/abs/2006.04836v2
- Date: Sun, 12 Sep 2021 20:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:59:46.108361
- Title: A Modified AUC for Training Convolutional Neural Networks: Taking
Confidence into Account
- Title(参考訳): 畳み込みニューラルネットワークのトレーニングのための修正AUC:信頼を考慮に入れて
- Authors: Khashayar Namdar, Masoom A. Haider, Farzad Khalvati
- Abstract要約: 本稿では,ROC曲線とAUC測定値について概観する。
モデルの信頼性を考慮に入れたAUCの修正版を提案する。
我々は、MNIST、前立腺MRI、脳MRIの3つのデータセットでこれを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Receiver operating characteristic (ROC) curve is an informative tool in
binary classification and Area Under ROC Curve (AUC) is a popular metric for
reporting performance of binary classifiers. In this paper, first we present a
comprehensive review of ROC curve and AUC metric. Next, we propose a modified
version of AUC that takes confidence of the model into account and at the same
time, incorporates AUC into Binary Cross Entropy (BCE) loss used for training a
Convolutional neural Network for classification tasks. We demonstrate this on
three datasets: MNIST, prostate MRI, and brain MRI. Furthermore, we have
published GenuineAI, a new python library, which provides the functions for
conventional AUC and the proposed modified AUC along with metrics including
sensitivity, specificity, recall, precision, and F1 for each point of the ROC
curve.
- Abstract(参考訳): 受信者動作特性曲線(ROC)はバイナリ分類における情報ツールであり、AUC(Area Under ROC Curve)はバイナリ分類器の性能を報告するための一般的な指標である。
本稿ではまず,ROC曲線とAUC測定値の総合的なレビューを行う。
次に、モデルの信頼性を考慮したAUCの修正版を提案し、同時に、分類タスクのための畳み込みニューラルネットワークのトレーニングに使用されるバイナリクロスエントロピー(BCE)損失にAUCを組み込む。
MNIST、前立腺MRI、脳MRIの3つのデータセットでこれを実証する。
さらに我々は,従来のAUCと修正AUCの機能と,OC曲線の各点に対する感度,特異性,リコール,精度,F1などの指標を提供する新しいピソンライブラリであるGenuineAIを公表した。
関連論文リスト
- IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition [7.9330990800767385]
破滅的な忘れ方として知られる新しいタスクを学ぶとき、モデルが古い知識を忘れる傾向は、未解決の課題である。
本稿では,SAR目標認識における破滅的忘れを緩和するために,IncSARと呼ばれる漸進的学習フレームワークを提案する。
IncSARはビジョントランスフォーマー(ViT)と、遅延融合戦略によって結合された個々のブランチにカスタム設計の畳み込みニューラルネットワーク(CNN)を備える。
論文 参考訳(メタデータ) (2024-10-08T08:49:47Z) - Analytic Convolutional Layer: A Step to Analytic Neural Network [15.596391258983463]
ACL(Analytic Convolutional Layer)は、分析的畳み込みカーネル(ACK)と従来の畳み込みカーネルのモザイクである。
ACLはニューラルネットワーク解釈の手段を提供するので、ニューラルネットワークの固有の解釈可能性の道を開くことができる。
論文 参考訳(メタデータ) (2024-07-03T07:10:54Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
本研究では、微細な画像分類の精度を向上させるために、新しい二重電流ニューラルネットワーク(DCNN)を提案する。
弱い教師付き学習バックボーンモデルを構築するための新しい特徴として、(a)異種データの抽出、(b)特徴マップの解像度の維持、(c)受容領域の拡大、(d)グローバル表現と局所特徴の融合などがある。
論文 参考訳(メタデータ) (2024-05-07T07:51:28Z) - Streaming Audio-Visual Speech Recognition with Alignment Regularization [69.30185151873707]
本稿では,ハイブリッド接続型時間分類(CTC)/アテンションニューラルネットワークアーキテクチャに基づくストリーミングAV-ASRシステムを提案する。
提案したAV-ASRモデルは、オフラインおよびオンライン設定でLip Reading Sentences 3データセット上で、WERの2.0%と2.6%を達成する。
論文 参考訳(メタデータ) (2022-11-03T20:20:47Z) - Low-Resource Music Genre Classification with Cross-Modal Neural Model
Reprogramming [129.4950757742912]
ニューラルモデル再プログラミング(NMR)の概念に基づく低リソース(音楽)分類のための事前学習モデルを活用する新しい手法を提案する。
NMRは、凍結した事前学習モデルの入力を変更することにより、ソースドメインからターゲットドメインへの事前学習モデルの再取得を目指している。
実験結果から,大規模データセットに事前学習したニューラルモデルは,この再プログラミング手法を用いて,音楽ジャンルの分類に成功できることが示唆された。
論文 参考訳(メタデータ) (2022-11-02T17:38:33Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Neural Model Reprogramming with Similarity Based Mapping for
Low-Resource Spoken Command Recognition [71.96870151495536]
低リソース音声コマンド認識(SCR)のための新しいAR手法を提案する。
ARプロシージャは、(対象領域から)音響信号を修正して、事前訓練されたSCRモデルを再利用することを目的としている。
提案したAR-SCRシステムについて,アラビア語,リトアニア語,マンダリン語を含む3つの低リソースSCRデータセットを用いて評価した。
論文 参考訳(メタデータ) (2021-10-08T05:07:35Z) - CRNNTL: convolutional recurrent neural network and transfer learning for
QSAR modelling [4.090810719630087]
本稿では,QSARモデリングのための畳み込みリカレントニューラルネットワークと伝達学習(CRNNTL)を提案する。
我々の戦略は、特徴抽出のための畳み込みニューラルネットワークと繰り返しニューラルネットワークの両方の利点と、データ拡張手法の利点を生かしている。
論文 参考訳(メタデータ) (2021-09-07T20:04:55Z) - Consistency and Monotonicity Regularization for Neural Knowledge Tracing [50.92661409499299]
人間の知識獲得を追跡する知識追跡(KT)は、オンライン学習と教育におけるAIの中心的なコンポーネントです。
本稿では, 新たなデータ拡張, 代替, 挿入, 削除の3種類と, 対応する正規化損失を提案する。
さまざまなKTベンチマークに関する広範な実験は、私たちの正規化スキームがモデルのパフォーマンスを一貫して改善することを示しています。
論文 参考訳(メタデータ) (2021-05-03T02:36:29Z) - Classification of Hand Gestures from Wearable IMUs using Deep Neural
Network [0.0]
慣性測定ユニット(Inertial Measurement Unit, IMU)は3軸加速度計とジャイロスコープで構成される。
本稿では,ウェアラブルIMUセンサから得られる手の動きを分類するために,Deep Neural Network (DNN) を用いた新しい分類手法を提案する。
論文 参考訳(メタデータ) (2020-04-27T01:08:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。