論文の概要: IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition
- arxiv url: http://arxiv.org/abs/2410.05820v1
- Date: Tue, 8 Oct 2024 08:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 12:39:56.683226
- Title: IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition
- Title(参考訳): IncSAR: SARターゲット認識のためのデュアルフュージョンインクリメンタルラーニングフレームワーク
- Authors: George Karantaidis, Athanasios Pantsios, Yiannis Kompatsiaris, Symeon Papadopoulos,
- Abstract要約: 破滅的な忘れ方として知られる新しいタスクを学ぶとき、モデルが古い知識を忘れる傾向は、未解決の課題である。
本稿では,SAR目標認識における破滅的忘れを緩和するために,IncSARと呼ばれる漸進的学習フレームワークを提案する。
IncSARはビジョントランスフォーマー(ViT)と、遅延融合戦略によって結合された個々のブランチにカスタム設計の畳み込みニューラルネットワーク(CNN)を備える。
- 参考スコア(独自算出の注目度): 7.9330990800767385
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning techniques have been successfully applied in Synthetic Aperture Radar (SAR) target recognition in static scenarios relying on predefined datasets. However, in real-world scenarios, models must incrementally learn new information without forgetting previously learned knowledge. Models' tendency to forget old knowledge when learning new tasks, known as catastrophic forgetting, remains an open challenge. In this paper, an incremental learning framework, called IncSAR, is proposed to mitigate catastrophic forgetting in SAR target recognition. IncSAR comprises a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in individual branches combined through a late-fusion strategy. A denoising module, utilizing the properties of Robust Principal Component Analysis (RPCA), is introduced to alleviate the speckle noise present in SAR images. Moreover, a random projection layer is employed to enhance the linear separability of features, and a Linear Discriminant Analysis (LDA) approach is proposed to decorrelate the extracted class prototypes. Experimental results on the MSTAR and OpenSARShip benchmark datasets demonstrate that IncSAR outperforms state-of-the-art approaches, leading to an improvement from $98.05\%$ to $99.63\%$ in average accuracy and from $3.05\%$ to $0.33\%$ in performance dropping rate.
- Abstract(参考訳): ディープラーニング技術は、事前に定義されたデータセットに依存する静的シナリオにおけるSAR(Synthetic Aperture Radar)ターゲット認識に成功している。
しかし、現実のシナリオでは、モデルは学習済みの知識を忘れずに、段階的に新しい情報を学ぶ必要がある。
破滅的な忘れ方として知られる新しいタスクを学ぶとき、モデルが古い知識を忘れる傾向は、未解決の課題である。
本稿では,SAR目標認識における破滅的忘れを緩和するために,インクリメンタル学習フレームワークIncSARを提案する。
IncSARはビジョントランスフォーマー(ViT)と、遅延融合戦略によって結合された個々のブランチにカスタム設計の畳み込みニューラルネットワーク(CNN)を備える。
SAR画像におけるスペックルノイズを軽減するため,ロバスト主成分分析(RPCA)の特性を利用したデノナイジングモジュールが導入された。
さらに,特徴の線形分離性を高めるためにランダムなプロジェクション層を用い,抽出したクラスプロトタイプをデコレーションするために線形判別分析(LDA)手法を提案する。
MSTARとOpenSARShipベンチマークデータセットの実験結果によると、IncSARは最先端のアプローチよりも優れており、平均精度が98.05\%$から99.63\%$、パフォーマンス低下率が3.05\%から0.33\%$に改善されている。
関連論文リスト
- EMWaveNet: Physically Explainable Neural Network Based on Electromagnetic Propagation for SAR Target Recognition [4.251056028888424]
本研究では,複雑なSAR画像認識のための物理的に説明可能なフレームワークを提案する。
ネットワークアーキテクチャは完全にパラメータ化されており、すべての学習可能なパラメータには明確な物理的意味がある。
提案手法は, 強力な物理決定論理, 高い物理説明性, 堅牢性, および優れた de-aliasing 機能を有する。
論文 参考訳(メタデータ) (2024-10-13T07:04:49Z) - IRASNet: Improved Feature-Level Clutter Reduction for Domain Generalized SAR-ATR [8.857297839399193]
本研究ではIRASNetと呼ばれるドメイン一般化SAR-ATRのためのフレームワークを提案する。
IRASNetは効果的な機能レベルのクラッタ削減とドメイン不変の機能学習を可能にする。
IRASNetは、性能を向上するだけでなく、特徴レベルのクラッタ低減を大幅に改善し、レーダ画像パターン認識の分野での貴重な進歩となる。
論文 参考訳(メタデータ) (2024-09-25T11:53:58Z) - Benchmarking Deep Learning Classifiers for SAR Automatic Target
Recognition [7.858656052565242]
本稿では,複数のSARデータセットを用いたSAR ATRの先進的な深層学習モデルを総合的にベンチマークする。
推論スループットと解析性能の観点から,分類精度のランタイム性能に関する5つの分類器の評価と比較を行った。
SAR ATRの領域では、すべてのモデルルールが疑わしいのです。
論文 参考訳(メタデータ) (2023-12-12T02:20:39Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
距離学習パラダイムに該当する新しいレペラ・トラクタ損失を提案するが、ペアを生成する必要がなく、直接L2メトリックに最適化する。
CBIRタスクにおいて,畳み込みアーキテクチャと変圧器アーキテクチャの両方を用いて,少数ショットおよびフルセットトレーニングの文脈で提案した目的を評価する。
論文 参考訳(メタデータ) (2023-06-01T12:53:10Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Learning class prototypes from Synthetic InSAR with Vision Transformers [2.41710192205034]
火山活動の早期の兆候の検出は、火山の危険を評価するために重要である。
本稿では,合成干渉図の豊富な情報源を利用した新しい深層学習手法を提案する。
本報告では, 火山変動検出技術に勝る検出精度について報告する。
論文 参考訳(メタデータ) (2022-01-09T14:03:00Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
本稿では,CNN の代わりに Transformer を用いて HSI の事前学習を行う新しい HSISR 手法を提案する。
具体的には、まず勾配アルゴリズムを用いてHSISRモデルを解き、次に展開ネットワークを用いて反復解過程をシミュレートする。
論文 参考訳(メタデータ) (2021-11-27T15:38:57Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。