論文の概要: Calibrated neighborhood aware confidence measure for deep metric
learning
- arxiv url: http://arxiv.org/abs/2006.04935v1
- Date: Mon, 8 Jun 2020 21:05:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 01:08:39.464737
- Title: Calibrated neighborhood aware confidence measure for deep metric
learning
- Title(参考訳): 深度メートル法学習のための校正近傍認識信頼度尺度
- Authors: Maryna Karpusha, Sunghee Yun, Istvan Fehervari
- Abstract要約: 深度メートル法学習は、数ショット学習、画像検索、およびオープンセット分類の問題にうまく適用されてきた。
深層学習モデルの信頼度を測定し、信頼できない予測を特定することは、まだオープンな課題です。
本稿では,その分類精度をよく反映した校正・解釈可能な信頼度尺度の定義に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep metric learning has gained promising improvement in recent years
following the success of deep learning. It has been successfully applied to
problems in few-shot learning, image retrieval, and open-set classifications.
However, measuring the confidence of a deep metric learning model and
identifying unreliable predictions is still an open challenge. This paper
focuses on defining a calibrated and interpretable confidence metric that
closely reflects its classification accuracy. While performing similarity
comparison directly in the latent space using the learned distance metric, our
approach approximates the distribution of data points for each class using a
Gaussian kernel smoothing function. The post-processing calibration algorithm
with proposed confidence metric on the held-out validation dataset improves
generalization and robustness of state-of-the-art deep metric learning models
while provides an interpretable estimation of the confidence. Extensive tests
on four popular benchmark datasets (Caltech-UCSD Birds, Stanford Online
Product, Stanford Car-196, and In-shop Clothes Retrieval) show consistent
improvements even at the presence of distribution shifts in test data related
to additional noise or adversarial examples.
- Abstract(参考訳): 近年、ディープラーニングの成功により、深層学習は有望な改善を遂げている。
マイナショット学習,画像検索,オープンセット分類などの問題に対してうまく適用されている。
しかし、深層学習モデルの信頼性を測り、信頼できない予測を特定することは依然としてオープンな課題である。
本稿では,その分類精度をよく反映した校正・解釈可能な信頼度尺度の定義に焦点をあてる。
学習距離メートル法を用いて遅延空間で類似性の比較を行う一方で,ガウス核平滑化関数を用いて各クラス毎のデータ点の分布を近似する。
ホールドアウト検証データセットに信頼度メトリックを提案する後処理キャリブレーションアルゴリズムは、最先端のディープラーニングモデルの一般化と堅牢性を改善しつつ、信頼度を解釈可能な推定を提供する。
一般的な4つのベンチマークデータセット(Caltech-UCSD Birds、Stanford Online Product、Stanford Car-196、In-shop Clothes Retrieval)の広範なテストは、追加のノイズや敵の例に関連するテストデータの分布シフトがあっても一貫した改善を示している。
関連論文リスト
- Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
本稿では,意味的かつ解釈可能な表現の作成を監督するために,EMG PRにおける深層メートル法メタラーニングへのシフトを提案する。
我々は、不正確な決定をよりよく拒否する頑健なクラス近接性に基づく信頼度推定器を導出する。
論文 参考訳(メタデータ) (2024-04-17T23:37:50Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - On the Calibration of Uncertainty Estimation in LiDAR-based Semantic
Segmentation [7.100396757261104]
本稿では,個々のクラスに対するセグメンテーションモデルの信頼性校正品質を測定する指標を提案する。
また,手書きまたは自動注釈付きデータセットの品質向上のためにラベル問題を自動的に検出する手法の二重利用を提案する。
論文 参考訳(メタデータ) (2023-08-04T10:59:24Z) - Rapid Adaptation in Online Continual Learning: Are We Evaluating It
Right? [135.71855998537347]
オンライン連続学習(OCL)アルゴリズムの適応性を評価するための一般的な手法を,オンライン精度の指標を用いて再検討する。
空白のブラインド分類器でさえ、非現実的に高いオンライン精度を達成できるため、この指標は信頼できない。
既存のOCLアルゴリズムは、オンラインの精度も高いが、有用な情報の保持は不十分である。
論文 参考訳(メタデータ) (2023-05-16T08:29:33Z) - Estimating Model Performance under Domain Shifts with Class-Specific
Confidence Scores [25.162667593654206]
不均衡なデータセットのパフォーマンス推定の枠組みの中で,クラスワイドキャリブレーションを導入する。
我々は、4つのタスクの実験を行い、提案した修正により、不均衡なデータセットの推定精度を一貫して改善する。
論文 参考訳(メタデータ) (2022-07-20T15:04:32Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
ニューラルネットワークの誤りを補うポストホックアプローチは、温度スケーリングを実行することだ。
入力毎に異なる温度値を予測し、信頼度と精度のミスマッチを調整することを提案する。
CIFAR10/100およびTiny-ImageNetデータセットを用いて,ResNet50およびWideResNet28-10アーキテクチャ上で本手法をテストする。
論文 参考訳(メタデータ) (2022-07-13T14:13:49Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
本稿では,現代の行動認識アーキテクチャの信頼度が,正しい結果の確率を反映していることを示す最初の研究を行う。
新たなキャリブレーションネットワークを通じて、モデル出力を現実的な信頼性推定に変換する新しいアプローチを紹介します。
論文 参考訳(メタデータ) (2021-01-02T15:41:21Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。