論文の概要: Gradient Boosting Application in Forecasting of Performance Indicators
Values for Measuring the Efficiency of Promotions in FMCG Retail
- arxiv url: http://arxiv.org/abs/2006.04945v1
- Date: Sat, 30 May 2020 20:08:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 17:51:50.667367
- Title: Gradient Boosting Application in Forecasting of Performance Indicators
Values for Measuring the Efficiency of Promotions in FMCG Retail
- Title(参考訳): fmcg小売店舗におけるプロモーションの効率評価のためのパフォーマンス指標値予測における勾配強化の適用
- Authors: Joanna Henzel and Marek Sikora
- Abstract要約: プロモーション効果を捉えるために6つのパフォーマンス指標が導入された。
それぞれの製品に対して、事前に定義された製品グループの中で、モデルがトレーニングされた。
大型食料品会社の3つの製品群を対象とした実験を行った。
- 参考スコア(独自算出の注目度): 0.10152838128195464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the paper, a problem of forecasting promotion efficiency is raised. The
authors propose a new approach, using the gradient boosting method for this
task. Six performance indicators are introduced to capture the promotion
effect. For each of them, within predefined groups of products, a model was
trained. A description of using these models for forecasting and optimising
promotion efficiency is provided. Data preparation and hyperparameters tuning
processes are also described. The experiments were performed for three groups
of products from a large grocery company.
- Abstract(参考訳): 本稿では,促進効率の予測に関する課題を提起する。
筆者らは, この課題に勾配ブースティング法を応用した新しい手法を提案する。
プロモーション効果を捉えるために、6つのパフォーマンス指標が導入される。
それぞれの製品について、事前定義されたグループ内では、モデルがトレーニングされた。
これらのモデルを用いたプロモーション効率の予測と最適化について述べる。
データ準備およびハイパーパラメータチューニングプロセスについても述べる。
実験は、大型食料品会社の3つのグループの製品に対して行われた。
関連論文リスト
- Generative Diffusion Models for Sequential Recommendations [7.948486055890262]
変分オートエンコーダ(VAE)やGAN(Generative Adversarial Networks)のような生成モデルは、逐次レコメンデーションタスクにおいて有望であることを示している。
本研究では、ロバスト性を改善するためにDiffuRecアーキテクチャの拡張を導入し、関連するユーザとイテムのインタラクションをよりよく捉えるために、Approximatorにクロスアテンション機構を組み込んだ。
論文 参考訳(メタデータ) (2024-10-25T09:39:05Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
我々は,BPRモデルの特徴を考察し,その性能への影響を示し,オープンソースのBPR実装について検討する。
分析の結果,これらの実装とオリジナルのBPR論文の矛盾が明らかとなり,特定の実装に対して最大50%の性能低下がみられた。
BPRモデルは、トップnのレコメンデーションタスクにおける最先端メソッドに近いパフォーマンスレベルを達成でき、特定のデータセット上でもパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-09-21T18:39:53Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,アクティブラーニング(AL)フレームワークにおけるパラメータ効率の良い微調整手法の適用に関する新たな研究である。
論文 参考訳(メタデータ) (2024-06-13T16:30:32Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
人間は、新しいタスクを学ぶ際に、過去の経験を明確に表現する能力を持っている。
本稿では,歴史情報を活用するためのアドオンモジュールとして,自己参照(SR)アプローチを提案する。
提案手法は,非教師付き強化学習ベンチマークにおけるIQM(Interquartile Mean)性能と最適ギャップ削減の両面から,最先端の成果を実現する。
論文 参考訳(メタデータ) (2023-11-16T09:07:34Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Refining the Responses of LLMs by Themselves [0.0]
繰り返し自己評価最適化機構を導入し、イテレーションが進むにつれて出力品質が向上する可能性を秘めている。
実験結果から, GPT-3.5モデルにおける応答改善フレームワークの利用は, 最先端の GPT-4 モデルと同等あるいはそれ以上の結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-06T13:03:45Z) - Functional Optimization Reinforcement Learning for Real-Time Bidding [14.5826735379053]
リアルタイム入札はプログラム広告の新しいパラダイムである。
既存のアプローチは、入札最適化に十分なソリューションを提供するのに苦労しています。
本稿では,機能最適化を伴うRTBのためのマルチエージェント強化学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-25T06:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。