論文の概要: Generative Diffusion Models for Sequential Recommendations
- arxiv url: http://arxiv.org/abs/2410.19429v1
- Date: Fri, 25 Oct 2024 09:39:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:08.844558
- Title: Generative Diffusion Models for Sequential Recommendations
- Title(参考訳): 逐次レコメンデーションのための生成拡散モデル
- Authors: Sharare Zolghadr, Ole Winther, Paul Jeha,
- Abstract要約: 変分オートエンコーダ(VAE)やGAN(Generative Adversarial Networks)のような生成モデルは、逐次レコメンデーションタスクにおいて有望であることを示している。
本研究では、ロバスト性を改善するためにDiffuRecアーキテクチャの拡張を導入し、関連するユーザとイテムのインタラクションをよりよく捉えるために、Approximatorにクロスアテンション機構を組み込んだ。
- 参考スコア(独自算出の注目度): 7.948486055890262
- License:
- Abstract: Generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have shown promise in sequential recommendation tasks. However, they face challenges, including posterior collapse and limited representation capacity. The work by Li et al. (2023) introduces a novel approach that leverages diffusion models to address these challenges by representing item embeddings as distributions rather than fixed vectors. This approach allows for a more adaptive reflection of users' diverse interests and various item aspects. During the diffusion phase, the model converts the target item embedding into a Gaussian distribution by adding noise, facilitating the representation of sequential item distributions and the injection of uncertainty. An Approximator then processes this noisy item representation to reconstruct the target item. In the reverse phase, the model utilizes users' past interactions to reverse the noise and finalize the item prediction through a rounding operation. This research introduces enhancements to the DiffuRec architecture, particularly by adding offset noise in the diffusion process to improve robustness and incorporating a cross-attention mechanism in the Approximator to better capture relevant user-item interactions. These contributions led to the development of a new model, DiffuRecSys, which improves performance. Extensive experiments conducted on three public benchmark datasets demonstrate that these modifications enhance item representation, effectively capture diverse user preferences, and outperform existing baselines in sequential recommendation research.
- Abstract(参考訳): 変分オートエンコーダ(VAE)やGAN(Generative Adversarial Networks)のような生成モデルは、逐次レコメンデーションタスクにおいて有望であることを示している。
しかし、それらは後部崩壊や限られた表現能力を含む課題に直面している。
Li et al (2023) による研究は、拡散モデルを利用してこれらの問題に対処する新しいアプローチを導入し、アイテム埋め込みを固定ベクトルではなく分布として表現する。
このアプローチは、ユーザのさまざまな関心やさまざまな項目の側面をより適応的に反映することを可能にする。
拡散相の間、モデルはノイズを加えてターゲットアイテムをガウス分布に変換し、逐次アイテム分布の表現や不確実性の注入を容易にする。
Approximatorは、このノイズの多いアイテム表現を処理して、ターゲットアイテムを再構築する。
逆フェーズでは、ユーザの過去のインタラクションを利用してノイズを逆転し、ラウンド操作を通じてアイテム予測を確定する。
本研究はDiffuRecアーキテクチャの強化,特に拡散過程にオフセットノイズを加えてロバスト性を改善し,関連するユーザ・イテムインタラクションをよりよく捉えるために,近似器にクロスアテンション機構を組み込むことによって実現した。
これらの貢献により、新しいモデルであるDiffuRecSysが開発され、パフォーマンスが向上した。
3つの公開ベンチマークデータセットで実施された大規模な実験は、これらの修正によってアイテム表現が向上し、多様なユーザの好みを効果的に捉え、シーケンシャルなレコメンデーション研究において既存のベースラインを上回っていることを示している。
関連論文リスト
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
論文 参考訳(メタデータ) (2024-10-31T14:52:01Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
ノイズから関節分布を生成する拡散型ATRフレームワーク(DiffATR)を提案する。
優れたパフォーマンスを持つAudioCapsとClothoデータセットの実験は、我々のアプローチの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-16T06:33:26Z) - Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings [7.207685588038045]
逐次レコメンデーションモデルは自己認識機構を用いて最先端のパフォーマンスを達成した。
アイテムIDと位置埋め込みのみの使用を超えて移動すると、次の項目を予測するときにかなりの精度が向上する。
モデルの頑健さと一般化を改善するため,レイヤワイドノイズインジェクション(LNI)正則化を用いたミックスアテンション機構を導入する。
論文 参考訳(メタデータ) (2024-09-08T08:27:22Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
拡散に基づく逐次レコメンデーションモデルにSchr"odinger Bridgeを導入し、SdifRecモデルを作成する。
また、ユーザクラスタリング情報を誘導条件として利用するcon-SdifRecと呼ばれるSdifRecの拡張版も提案する。
論文 参考訳(メタデータ) (2024-08-30T09:10:38Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
本稿では,CaDiRecという,文脈対応拡散に基づく逐次推薦のためのコントラスト学習を提案する。
CaDiRecは、コンテキスト対応拡散モデルを使用して、シーケンス内の所定の位置に対する代替アイテムを生成する。
フレームワーク全体をエンドツーエンドでトレーニングし、拡散モデルとレコメンデーションモデルの間でアイテムの埋め込みを共有します。
論文 参考訳(メタデータ) (2024-05-15T14:20:37Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Diffusion Action Segmentation [63.061058214427085]
本稿では,このような反復的洗練の本質的な精神を共用した拡散モデルによる新しい枠組みを提案する。
このフレームワークでは、入力された映像の特徴を条件としてランダムノイズから行動予測を反復的に生成する。
論文 参考訳(メタデータ) (2023-03-31T10:53:24Z) - Modeling Sequences as Distributions with Uncertainty for Sequential
Recommendation [63.77513071533095]
既存のシーケンシャルメソッドの多くは、ユーザが決定論的であると仮定する。
項目-項目遷移は、いくつかの項目において著しく変動し、ユーザの興味のランダム性を示す。
本稿では,不確実性を逐次モデルに注入する分散型トランスフォーマーシークエンシャルレコメンデーション(DT4SR)を提案する。
論文 参考訳(メタデータ) (2021-06-11T04:35:21Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。