Machine Learning Systems for Intelligent Services in the IoT: A Survey
- URL: http://arxiv.org/abs/2006.04950v3
- Date: Tue, 1 Dec 2020 11:14:40 GMT
- Title: Machine Learning Systems for Intelligent Services in the IoT: A Survey
- Authors: Wiebke Toussaint and Aaron Yi Ding
- Abstract summary: This survey moves beyond existing ML algorithms and cloud-driven design to investigate the less-explored systems.
It covers the latest developments (up to 2020) on scaling and distributing ML across cloud, edge, and IoT devices.
- Score: 0.7106986689736825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) technologies are emerging in the Internet of Things
(IoT) to provision intelligent services. This survey moves beyond existing ML
algorithms and cloud-driven design to investigate the less-explored systems,
scaling and socio-technical aspects for consolidating ML and IoT. It covers the
latest developments (up to 2020) on scaling and distributing ML across cloud,
edge, and IoT devices. With a multi-layered framework to classify and
illuminate system design choices, this survey exposes fundamental concerns of
developing and deploying ML systems in the rising cloud-edge-device continuum
in terms of functionality, stakeholder alignment and trustworthiness.
Related papers
- Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
This paper presents the findings of a literature review on the integration of edge intelligence (EI) and socialized learning (SL)
SL is a learning paradigm predicated on social principles and behaviors, aimed at amplifying the collaborative capacity and collective intelligence of agents.
We elaborate on three integrated components: socialized architecture, socialized training, and socialized inference, analyzing their strengths and weaknesses.
arXiv Detail & Related papers (2024-04-20T11:07:29Z) - Fostering new Vertical and Horizontal IoT Applications with Intelligence
Everywhere [8.208838459484676]
Intelligence Everywhere is predicated on the seamless integration of IoT networks transporting a vast amount of data streams.
This paper discusses the state-of-the-art research and the principles of the Intelligence Everywhere framework.
It also introduces a novel perspective for the development of horizontal IoT applications.
arXiv Detail & Related papers (2023-09-30T11:59:39Z) - A Machine Learning-oriented Survey on Tiny Machine Learning [9.690117347832722]
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence.
TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies.
arXiv Detail & Related papers (2023-09-21T09:47:12Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - MDE for Machine Learning-Enabled Software Systems: A Case Study and
Comparison of MontiAnna & ML-Quadrat [5.839906946900443]
We propose to adopt the MDE paradigm for the development of Machine Learning-enabled software systems with a focus on the Internet of Things (IoT) domain.
We illustrate how two state-of-the-art open-source modeling tools, namely MontiAnna and ML-Quadrat can be used for this purpose as demonstrated through a case study.
arXiv Detail & Related papers (2022-09-15T13:21:16Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
This paper presents a framework called Semantic Low-Code Engineering for ML Applications (SeLoC-ML)
SeLoC-ML enables non-experts to model, discover, reuse, and matchmake ML models and devices at scale.
Developers can benefit from semantic application templates, called recipes, to fast prototype end-user applications.
arXiv Detail & Related papers (2022-07-18T13:06:21Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Machine Learning Systems in the IoT: Trustworthiness Trade-offs for Edge
Intelligence [1.2437226707039446]
Machine learning systems (MLSys) are emerging in the Internet of Things (IoT) to provision edge intelligence.
This paper analyzes the trade-offs by covering the latest developments (up to 2020) on scaling and distributing ML across cloud, edge, and IoT devices.
arXiv Detail & Related papers (2020-12-01T11:42:34Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.