Feature Interaction based Neural Network for Click-Through Rate
Prediction
- URL: http://arxiv.org/abs/2006.05312v1
- Date: Sun, 7 Jun 2020 03:53:24 GMT
- Title: Feature Interaction based Neural Network for Click-Through Rate
Prediction
- Authors: Dafang Zou and Leiming Zhang and Jiafa Mao and Weiguo Sheng
- Abstract summary: We propose a Feature Interaction based Neural Network (FINN) which is able to model feature interaction via a 3-dimention relation tensor.
We show that our deep FINN model outperforms other state-of-the-art deep models such as PNN and DeepFM.
It also indicates that our models can effectively learn the feature interactions, and achieve better performances in real-world datasets.
- Score: 5.095988654970358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-Through Rate (CTR) prediction is one of the most important and
challenging in calculating advertisements and recommendation systems. To build
a machine learning system with these data, it is important to properly model
the interaction among features. However, many current works calculate the
feature interactions in a simple way such as inner product and element-wise
product. This paper aims to fully utilize the information between features and
improve the performance of deep neural networks in the CTR prediction task. In
this paper, we propose a Feature Interaction based Neural Network (FINN) which
is able to model feature interaction via a 3-dimention relation tensor. FINN
provides representations for the feature interactions on the the bottom layer
and the non-linearity of neural network in modelling higher-order feature
interactions. We evaluate our models on CTR prediction tasks compared with
classical baselines and show that our deep FINN model outperforms other
state-of-the-art deep models such as PNN and DeepFM. Evaluation results
demonstrate that feature interaction contains significant information for
better CTR prediction. It also indicates that our models can effectively learn
the feature interactions, and achieve better performances in real-world
datasets.
Related papers
- Some Insights of Construction of Feature Graph to Learn Pairwise Feature Interactions with Graph Neural Networks [0.24999074238880484]
We focus on pairwise interactions and investigate their importance in constructing feature graphs for Graph Neural Networks (GNNs)
We uncover that edges between interacting features are important for enabling GNNs to model feature interactions effectively.
We also observe that including non-interaction edges can act as noise, degrading model performance.
arXiv Detail & Related papers (2025-02-19T06:47:23Z) - Multi-Head Self-Attending Neural Tucker Factorization [5.734615417239977]
We introduce a neural network-based tensor factorization approach tailored for learning representations of high-dimensional and incomplete (HDI) tensors.
The proposed MSNTucF model demonstrates superior performance compared to state-of-the-art benchmark models in estimating missing observations.
arXiv Detail & Related papers (2025-01-16T13:04:15Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - Dynamic Parameterized Network for CTR Prediction [6.749659219776502]
We proposed a novel plug-in operation, Dynamic ized Operation (DPO), to learn both explicit and implicit interaction instance-wisely.
We showed that the introduction of DPO into DNN modules and Attention modules can respectively benefit two main tasks in click-through rate (CTR) prediction.
Our Dynamic ized Networks significantly outperforms state-of-the-art methods in the offline experiments on the public dataset and real-world production dataset.
arXiv Detail & Related papers (2021-11-09T08:15:03Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - AdnFM: An Attentive DenseNet based Factorization Machine for CTR
Prediction [11.958336595818267]
We propose a novel model called Attentive DenseNet based Factorization Machines (AdnFM)
AdnFM can extract more comprehensive deep features by using all the hidden layers from a feed-forward neural network as implicit high-order features.
Experiments on two real-world datasets show that the proposed model can effectively improve the performance of Click-Through-Rate prediction.
arXiv Detail & Related papers (2020-12-20T01:00:39Z) - GAMI-Net: An Explainable Neural Network based on Generalized Additive
Models with Structured Interactions [5.8010446129208155]
An explainable neural network based on generalized additive models with structured interactions (GAMI-Net) is proposed to pursue a good balance between prediction accuracy and model interpretability.
GAMI-Net is a disentangled feedforward network with multiple additiveworks.
Numerical experiments on both synthetic functions and real-world datasets show that the proposed model enjoys superior interpretability.
arXiv Detail & Related papers (2020-03-16T11:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.