Extracting work from coherence in a two-mode Bose-Einstein condensate
- URL: http://arxiv.org/abs/2406.12410v1
- Date: Tue, 18 Jun 2024 09:00:46 GMT
- Title: Extracting work from coherence in a two-mode Bose-Einstein condensate
- Authors: L. A. Williamson, F. Cerisola, J. Anders, Matthew J. Davis,
- Abstract summary: We show how work can be extracted from number-state coherence in a two-mode Bose-Einstein condensate.
We characterise quantum (from coherence) and classical (remaining) contributions to work output.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how work can be extracted from number-state coherence in a two-mode Bose-Einstein condensate. With careful tuning of parameters, a sequence of thermodynamically reversible steps transforms a Glauber coherent state into a thermal state with the same energy probability distribution. The work extracted during this process arises entirely from the removal of quantum coherence. More generally, we characterise quantum (from coherence) and classical (remaining) contributions to work output, and find that in this system the quantum contribution can be dominant over a broad range of parameters. The proportion of quantum work output can be further enhanced by squeezing the initial coherent state. Due to the many-body nature of the system, the work from coherence can equivalently be understood as work from entanglement.
Related papers
- Quantum non-Markovianity, quantum coherence and extractable work in a
general quantum process [0.0]
Key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system.
Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energy.
We investigate the evolution of extractable work when an open quantum system goes through a general quantum process described by a completely-positive and trace-preserving dynamical map.
arXiv Detail & Related papers (2023-09-10T11:05:35Z) - Measurement Induced Synthesis of Coherent Quantum Batteries [0.0]
We propose a conditional synthesis of $N$ independent two-level systems (TLS) with partial quantum coherence obtained from an environment to one coherent system.
The measurement process acts here as a Maxwell demon synthesizing the coherent energy of individual TLS to one large coherent quantum battery.
arXiv Detail & Related papers (2022-11-16T12:33:34Z) - Entropy of the quantum work distribution [0.0]
We show how the Shannon entropy of the work distribution admits a general upper bound depending on the initial diagonal entropy.
We demonstrate that this approach captures strong signatures of the underlying physics in a diverse range of settings.
arXiv Detail & Related papers (2022-10-14T15:31:39Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Work fluctuations and entanglement in quantum batteries [0.0]
We characterize quantum correlations by monitoring the average energy change and its fluctuations in the high-dimensional bipartite systems.
We derive a hierarchy of bounds on high-dimensional entanglement (the so-called Schmidt number) from the work fluctuations.
We develop two-point measurement protocols with noisy detectors that can estimate work fluctuations.
arXiv Detail & Related papers (2022-05-17T15:42:21Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum Coherence and Ergotropy [0.0]
Constraints on work extraction are fundamental to our understanding of the thermodynamics of both classical and quantum systems.
In the quantum setting, finite-time control operations generate coherence in the instantaneous energy eigenbasis of the dynamical system.
We isolate and study the quantum coherent component to the work yield in such protocols.
arXiv Detail & Related papers (2020-06-09T17:50:13Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Finite Block Length Analysis on Quantum Coherence Distillation and
Incoherent Randomness Extraction [64.04327674866464]
We introduce a variant of randomness extraction framework where free incoherent operations are allowed before the incoherent measurement.
We show that the maximum number of random bits extractable from a given quantum state is precisely equal to the maximum number of coherent bits that can be distilled from the same state.
Remarkably, the incoherent operation classes all admit the same second order expansions.
arXiv Detail & Related papers (2020-02-27T09:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.