論文の概要: Synergetic Learning Systems: Concept, Architecture, and Algorithms
- arxiv url: http://arxiv.org/abs/2006.06367v2
- Date: Sun, 14 Jun 2020 10:19:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 12:14:20.287424
- Title: Synergetic Learning Systems: Concept, Architecture, and Algorithms
- Title(参考訳): シナジー学習システム:概念,アーキテクチャ,アルゴリズム
- Authors: Ping Guo, and Qian Yin
- Abstract要約: 総合学習システム(Synergetic Learning Systems)」という人工知能システムについて述べる。
本システムは,協調的・競争的な相乗学習を通じて,与えられた環境におけるインテリジェントな情報処理と意思決定を実現する。
設計基準の下では,提案システムは長期的にの共進化を通じて,最終的には汎用的な人工知能を実現することが期待されている。
- 参考スコア(独自算出の注目度): 4.623783824925363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drawing on the idea that brain development is a Darwinian process of
``evolution + selection'' and the idea that the current state is a local
equilibrium state of many bodies with self-organization and evolution processes
driven by the temperature and gravity in our universe, in this work, we
describe an artificial intelligence system called the ``Synergetic Learning
Systems''. The system is composed of two or more subsystems (models, agents or
virtual bodies), and it is an open complex giant system. Inspired by natural
intelligence, the system achieves intelligent information processing and
decision-making in a given environment through cooperative/competitive
synergetic learning. The intelligence evolved by the natural law of ``it is not
the strongest of the species that survives, but the one most responsive to
change,'' while an artificial intelligence system should adopt the law of
``human selection'' in the evolution process. Therefore, we expect that the
proposed system architecture can also be adapted in human-machine synergy or
multi-agent synergetic systems. It is also expected that under our design
criteria, the proposed system will eventually achieve artificial general
intelligence through long term coevolution.
- Abstract(参考訳): 脳の発達は「進化+選択」のダーウィン的過程であるという考えと、現在の状態が多くの天体の局所平衡状態であり、宇宙の温度と重力によって駆動される自己組織と進化過程であるという考えを踏まえて、本研究では、'synergetic learning systems'と呼ばれる人工知能システムについて述べる。
このシステムは2つ以上のサブシステム(モデル、エージェントまたは仮想体)で構成され、オープンな複雑な巨大システムである。
ナチュラルインテリジェンスにインスパイアされたシステムは、協調的/競争的なシナジー学習を通じて、与えられた環境におけるインテリジェントな情報処理と意思決定を実現する。
人工知能システムは進化過程において「人間の選択」の法則を採用するべきであるが、「それは生き残る種の中では最強ではなく、変化に最も反応する」という自然法則によって進化した知性である。
したがって,提案システムアーキテクチャは,人間機械のシナジーやマルチエージェントのシナジーシステムにも適用できると考えられる。
また, 設計基準の下では, 長期的共進化により, 最終的には汎用的な人工知能の実現が期待できる。
関連論文リスト
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
人工知能を作ることの追求は、私たち自身の知性を理解することへの長年の関心を反映している。
最近のAIの進歩は約束を守るが、特異なアプローチはしばしば知性の本質を捉えるのに不足する。
本稿では,生物計算の基本原理が真にインテリジェントなシステムの設計をいかに導くかを検討する。
論文 参考訳(メタデータ) (2024-11-22T02:55:39Z) - The Trap of Presumed Equivalence: Artificial General Intelligence Should Not Be Assessed on the Scale of Human Intelligence [0.0]
知的システム理論における新しい知性を評価する従来のアプローチは、人間のような行動や行動の類似性、「模倣」に基づいている。
いくつかの自然な仮定の下では、インテリジェントなシステムを開発することは、独自の意図と目的を形成することができる、と我々は主張する。
論文 参考訳(メタデータ) (2024-10-14T13:39:58Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - Co-evolutionary hybrid intelligence [0.3007949058551534]
インテリジェントシステム開発に対する現在のアプローチは、データ中心である。
本稿では,人間と機械のハイブリッド化と共進化に基づく人工知能システム開発への代替的アプローチについて論じる。
論文 参考訳(メタデータ) (2021-12-09T08:14:56Z) - On the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems (SAS) [87.3520234553785]
共生自律システム(SAS)は、自律的な集団知能を示す高度なインテリジェントおよび認知システムです。
この研究は、知性、認知、コンピュータ、システム科学の最新の進歩に根ざしたSASの理論的枠組みを示す。
論文 参考訳(メタデータ) (2021-02-11T05:44:25Z) - Conceptualization and Framework of Hybrid Intelligence Systems [0.0]
この記事では、ハイブリッドインテリジェンスシステムの正確な定義と、他の同様の概念との関係を説明します。
すべてのAIシステムはハイブリッドインテリジェンスシステムであるため、そのようなシステムのライフサイクルのあらゆる段階で人間の要因を調べる必要があります。
論文 参考訳(メタデータ) (2020-12-11T06:42:06Z) - The Evolution of Concept-Acquisition based on Developmental Psychology [4.416484585765028]
知識に基づく人工知能システムの性能向上の鍵は、豊富な意味を持つ概念システムである。
概念を表現し、概念システムを構築する新しい方法を見つけることは、多くのインテリジェントシステムの性能を大幅に向上させる。
発達心理学は、人間の行動レベルで概念獲得の過程を注意深く観察する。
論文 参考訳(メタデータ) (2020-11-26T01:57:24Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。