Reserve Price Optimization for First Price Auctions
- URL: http://arxiv.org/abs/2006.06519v2
- Date: Sun, 28 Jun 2020 19:25:33 GMT
- Title: Reserve Price Optimization for First Price Auctions
- Authors: Zhe Feng, S\'ebastien Lahaie, Jon Schneider, Jinchao Ye
- Abstract summary: We propose a gradient-based algorithm to adaptively update and optimize reserve prices based on estimates of bidders' responsiveness to experimental shocks in reserves.
We show that revenue in a first-price auction can be usefully decomposed into a emphdemand component and a emphbidding component, and introduce techniques to reduce the variance of each component.
- Score: 14.18752189817994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The display advertising industry has recently transitioned from second- to
first-price auctions as its primary mechanism for ad allocation and pricing. In
light of this, publishers need to re-evaluate and optimize their auction
parameters, notably reserve prices. In this paper, we propose a gradient-based
algorithm to adaptively update and optimize reserve prices based on estimates
of bidders' responsiveness to experimental shocks in reserves. Our key
innovation is to draw on the inherent structure of the revenue objective in
order to reduce the variance of gradient estimates and improve convergence
rates in both theory and practice. We show that revenue in a first-price
auction can be usefully decomposed into a \emph{demand} component and a
\emph{bidding} component, and introduce techniques to reduce the variance of
each component. We characterize the bias-variance trade-offs of these
techniques and validate the performance of our proposed algorithm through
experiments on synthetic data and real display ad auctions data from Google ad
exchange.
Related papers
- Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs.
Our goal is to design computationally efficient auctions that maximize the difference between the quality of the acquired services and the total cost of the sellers.
arXiv Detail & Related papers (2024-11-20T18:06:55Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
We address the problem of dynamically pricing complementary items that are sequentially displayed to customers.
Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective.
We empirically evaluate our approach using synthetic settings randomly generated from real-world data, and compare its performance in terms of constraints violation and regret.
arXiv Detail & Related papers (2024-07-08T09:55:31Z) - Advancing Ad Auction Realism: Practical Insights & Modeling Implications [2.8413290300628313]
This paper shows that one can still gain useful insight into modern ad auctions by modeling advertisers as agents governed by an adversarial bandit algorithm.
We find that soft floors yield lower revenues than suitably chosen reserve prices, even restricting attention to a single query.
arXiv Detail & Related papers (2023-07-21T17:45:28Z) - Demystifying Advertising Campaign Bid Recommendation: A Constraint
target CPA Goal Optimization [19.857681941728597]
This paper presents a bid optimization scenario to achieve the desired cost-per-acquisition (tCPA) goals for advertisers.
We build the optimization engine to make a decision by solving the rigorously formalized constrained optimization problem.
The proposed model can naturally recommend the bid that meets the advertisers' expectations by making inference over advertisers' historical auction behaviors.
arXiv Detail & Related papers (2022-12-26T07:43:26Z) - Benefits of Permutation-Equivariance in Auction Mechanisms [90.42990121652956]
An auction mechanism that maximizes the auctioneer's revenue while minimizes bidders' ex-post regret is an important yet intricate problem in economics.
Remarkable progress has been achieved through learning the optimal auction mechanism by neural networks.
arXiv Detail & Related papers (2022-10-11T16:13:25Z) - Fairness, Welfare, and Equity in Personalized Pricing [88.9134799076718]
We study the interplay of fairness, welfare, and equity considerations in personalized pricing based on customer features.
We show the potential benefits of personalized pricing in two settings: pricing subsidies for an elective vaccine, and the effects of personalized interest rates on downstream outcomes in microcredit.
arXiv Detail & Related papers (2020-12-21T01:01:56Z) - A Game-Theoretic Analysis of the Empirical Revenue Maximization
Algorithm with Endogenous Sampling [19.453243313852557]
Empirical Revenue Maximization (ERM) is one of the most important price learning algorithms in auction design.
We generalize the definition of an incentive-awareness measure proposed by Lavi et al to quantify the reduction of ERM's outputted price due to a change of $mge 1$ out of $N$ input samples.
We construct an efficient, approximately incentive-compatible, and revenue-optimal learning algorithm using ERM in repeated auctions against non-myopic bidders, and show approximate group incentive-compatibility in uniform-price auctions.
arXiv Detail & Related papers (2020-10-12T08:20:35Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
We formulate the sequential advertising strategy optimization as a dynamic knapsack problem.
We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space.
To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach.
arXiv Detail & Related papers (2020-06-29T18:50:35Z) - Real-Time Optimization Of Web Publisher RTB Revenues [10.908037452134302]
This paper describes an engine to optimize web publisher revenues from second-price auctions.
The engine is able to predict, for each auction, an optimal reserve price in approximately one millisecond.
arXiv Detail & Related papers (2020-06-12T11:14:56Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
We study a multi-round welfare-maximising mechanism design problem in instances where agents do not know their values.
We first define three notions of regret for the welfare, the individual utilities of each agent and that of the mechanism.
Our framework also provides flexibility to control the pricing scheme so as to trade-off between the agent and seller regrets.
arXiv Detail & Related papers (2020-04-19T18:00:58Z) - Online Causal Inference for Advertising in Real-Time Bidding Auctions [1.9336815376402723]
This paper proposes a new approach to perform causal inference on advertising bought through real-time bidding systems.
We first show that the effects of advertising are identified by the optimal bids.
We introduce an adapted Thompson sampling (TS) algorithm to solve a multi-armed bandit problem.
arXiv Detail & Related papers (2019-08-22T21:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.