Advancing Ad Auction Realism: Practical Insights & Modeling Implications
- URL: http://arxiv.org/abs/2307.11732v2
- Date: Tue, 9 Apr 2024 20:28:37 GMT
- Title: Advancing Ad Auction Realism: Practical Insights & Modeling Implications
- Authors: Ming Chen, Sareh Nabi, Marciano Siniscalchi,
- Abstract summary: This paper shows that one can still gain useful insight into modern ad auctions by modeling advertisers as agents governed by an adversarial bandit algorithm.
We find that soft floors yield lower revenues than suitably chosen reserve prices, even restricting attention to a single query.
- Score: 2.8413290300628313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary real-world online ad auctions differ from canonical models [Edelman et al., 2007; Varian, 2009] in at least four ways: (1) values and click-through rates can depend upon users' search queries, but advertisers can only partially "tune" their bids to specific queries; (2) advertisers do not know the number, identity, and precise value distribution of competing bidders; (3) advertisers only receive partial, aggregated feedback, and (4) payment rules are only partially known to bidders. These features make it virtually impossible to fully characterize equilibrium bidding behavior. This paper shows that, nevertheless, one can still gain useful insight into modern ad auctions by modeling advertisers as agents governed by an adversarial bandit algorithm, independent of auction mechanism intricacies. To demonstrate our approach, we first simulate "soft-floor" auctions [Zeithammer, 2019], a complex, real-world pricing rule for which no complete equilibrium characterization is known. We find that (i) when values and click-through rates are query-dependent, soft floors can improve revenues relative to standard auction formats even if bidder types are drawn from the same distribution; and (ii) with distributional asymmetries that reflect relevant real-world scenario, we find that soft floors yield lower revenues than suitably chosen reserve prices, even restricting attention to a single query. We then demonstrate how to infer advertiser value distributions from observed bids for a variety of pricing rules, and illustrate our approach with aggregate data from an e-commerce website.
Related papers
- Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs.
Our goal is to design computationally efficient auctions that maximize the difference between the quality of the acquired services and the total cost of the sellers.
arXiv Detail & Related papers (2024-11-20T18:06:55Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
We address the problem of dynamically pricing complementary items that are sequentially displayed to customers.
Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective.
We empirically evaluate our approach using synthetic settings randomly generated from real-world data, and compare its performance in terms of constraints violation and regret.
arXiv Detail & Related papers (2024-07-08T09:55:31Z) - Fair Allocation in Dynamic Mechanism Design [57.66441610380448]
We consider a problem where an auctioneer sells an indivisible good to groups of buyers in every round, for a total of $T$ rounds.
The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group.
arXiv Detail & Related papers (2024-05-31T19:26:05Z) - Adaptive Risk-Aware Bidding with Budget Constraint in Display
Advertising [47.14651340748015]
We propose a novel adaptive risk-aware bidding algorithm with budget constraint via reinforcement learning.
We theoretically unveil the intrinsic relation between the uncertainty and the risk tendency based on value at risk (VaR)
arXiv Detail & Related papers (2022-12-06T18:50:09Z) - Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions [42.002983450368134]
We study the question of how to bid in first-price auctions.
Unlike in second-price auctions, bidding one's private value truthfully is no longer optimal.
We consider two types of hints: one where a single point-prediction is available, and the other where a hint interval is available.
arXiv Detail & Related papers (2022-11-05T19:20:53Z) - Fast Rate Learning in Stochastic First Price Bidding [0.0]
First-price auctions have largely replaced traditional bidding approaches based on Vickrey auctions in programmatic advertising.
We show how to achieve significantly lower regret when the opponents' maximal bid distribution is known.
Our algorithms converge much faster than alternatives proposed in the literature for various bid distributions.
arXiv Detail & Related papers (2021-07-05T07:48:52Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
Real-Time Bidding is a new Internet advertising system that has become very popular in recent years.
We propose an alternative betting system with a new approach that not only considers the economic aspect but also other relevant factors for the functioning of the advertising system.
arXiv Detail & Related papers (2020-10-22T18:36:41Z) - Real-Time Optimization Of Web Publisher RTB Revenues [10.908037452134302]
This paper describes an engine to optimize web publisher revenues from second-price auctions.
The engine is able to predict, for each auction, an optimal reserve price in approximately one millisecond.
arXiv Detail & Related papers (2020-06-12T11:14:56Z) - Reserve Price Optimization for First Price Auctions [14.18752189817994]
We propose a gradient-based algorithm to adaptively update and optimize reserve prices based on estimates of bidders' responsiveness to experimental shocks in reserves.
We show that revenue in a first-price auction can be usefully decomposed into a emphdemand component and a emphbidding component, and introduce techniques to reduce the variance of each component.
arXiv Detail & Related papers (2020-06-11T15:35:19Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
We study a multi-round welfare-maximising mechanism design problem in instances where agents do not know their values.
We first define three notions of regret for the welfare, the individual utilities of each agent and that of the mechanism.
Our framework also provides flexibility to control the pricing scheme so as to trade-off between the agent and seller regrets.
arXiv Detail & Related papers (2020-04-19T18:00:58Z) - Scalable Bid Landscape Forecasting in Real-time Bidding [12.692521867728091]
In programmatic advertising, ad slots are usually sold using second-price (SP) auctions in real-time.
In SP, for a single item, the dominant strategy of each bidder is to bid the true value from the bidder's perspective.
We propose a heteroscedastic fully parametric censored regression approach, as well as a mixture density censored network.
arXiv Detail & Related papers (2020-01-18T03:20:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.