Time-Resolved fMRI Shared Response Model using Gaussian Process Factor
Analysis
- URL: http://arxiv.org/abs/2006.05572v2
- Date: Sat, 5 Sep 2020 01:13:56 GMT
- Title: Time-Resolved fMRI Shared Response Model using Gaussian Process Factor
Analysis
- Authors: MohammadReza Ebrahimi, Navona Calarco, Kieran Campbell, Colin Hawco,
Aristotle Voineskos, Ashish Khisti
- Abstract summary: We introduce a new model, Shared Gaussian Process Factor Analysis (S-GPFA), that discovers shared latent trajectories and subject-specific functional topographies.
We demonstrate the efficacy of our model in revealing ground truth latent structures using simulated data, and replicate experimental performance of time-segment matching and inter-subject similarity on the publicly available Raider and Sherlock datasets.
- Score: 19.237759421319957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-subject fMRI studies are challenging due to the high variability of
both brain anatomy and functional brain topographies across participants. An
effective way of aggregating multi-subject fMRI data is to extract a shared
representation that filters out unwanted variability among subjects. Some
recent work has implemented probabilistic models to extract a shared
representation in task fMRI. In the present work, we improve upon these models
by incorporating temporal information in the common latent structures. We
introduce a new model, Shared Gaussian Process Factor Analysis (S-GPFA), that
discovers shared latent trajectories and subject-specific functional
topographies, while modelling temporal correlation in fMRI data. We demonstrate
the efficacy of our model in revealing ground truth latent structures using
simulated data, and replicate experimental performance of time-segment matching
and inter-subject similarity on the publicly available Raider and Sherlock
datasets. We further test the utility of our model by analyzing its learned
model parameters in the large multi-site SPINS dataset, on a social cognition
task from participants with and without schizophrenia.
Related papers
- Multi-modal Gaussian Process Variational Autoencoders for Neural and
Behavioral Data [0.9622208190558754]
We propose an unsupervised latent variable model which extracts temporally evolving shared and independent latents for distinct, simultaneously recorded experimental modalities.
We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time.
We show that the multi-modal GP-VAE is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials.
arXiv Detail & Related papers (2023-10-04T19:04:55Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Spatio-temporally separable non-linear latent factor learning: an
application to somatomotor cortex fMRI data [0.0]
Models of fMRI data that can perform whole-brain discovery of latent factors are understudied.
New methods for efficient spatial weight-sharing are critical to deal with the high dimensionality of the data and the presence of noise.
Our approach is evaluated on data with multiple motor sub-tasks to assess whether the model captures disentangled latent factors that correspond to each sub-task.
arXiv Detail & Related papers (2022-05-26T21:30:22Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Identification of brain states, transitions, and communities using
functional MRI [0.5872014229110214]
We propose a Bayesian model-based characterization of latent brain states and showcase a novel method based on posterior predictive discrepancy.
Our results obtained through an analysis of task-fMRI data show appropriate lags between external task demands and change-points between brain states.
arXiv Detail & Related papers (2021-01-26T08:10:00Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Incorporating structured assumptions with probabilistic graphical models
in fMRI data analysis [5.23143327587266]
We review a few recently developed algorithms in various domains of fMRI research.
These algorithms all tackle the challenges in fMRI similarly.
We advocate wider adoption of explicit model construction in cognitive neuroscience.
arXiv Detail & Related papers (2020-05-11T06:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.