Coupled generator decomposition for fusion of electro- and magnetoencephalography data
- URL: http://arxiv.org/abs/2403.15409v1
- Date: Sat, 2 Mar 2024 12:09:16 GMT
- Title: Coupled generator decomposition for fusion of electro- and magnetoencephalography data
- Authors: Anders Stevnhoved Olsen, Jesper Duemose Nielsen, Morten Mørup,
- Abstract summary: Data fusion modeling can identify common features across diverse data sources while accounting for source-specific variability.
We introduce the concept of a textitcoupled generator decomposition and demonstrate how it generalizes sparse principal component analysis for data fusion.
- Score: 1.7102695043811291
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data fusion modeling can identify common features across diverse data sources while accounting for source-specific variability. Here we introduce the concept of a \textit{coupled generator decomposition} and demonstrate how it generalizes sparse principal component analysis (SPCA) for data fusion. Leveraging data from a multisubject, multimodal (electro- and magnetoencephalography (EEG and MEG)) neuroimaging experiment, we demonstrate the efficacy of the framework in identifying common features in response to face perception stimuli, while accommodating modality- and subject-specific variability. Through split-half cross-validation of EEG/MEG trials, we investigate the optimal model order and regularization strengths for models of varying complexity, comparing these to a group-level model assuming shared brain responses to stimuli. Our findings reveal altered $\sim170ms$ fusiform face area activation for scrambled faces, as opposed to real faces, particularly evident in the multimodal, multisubject model. Model parameters were inferred using stochastic optimization in PyTorch, demonstrating comparable performance to conventional quadratic programming inference for SPCA but with considerably faster execution. We provide an easily accessible toolbox for coupled generator decomposition that includes data fusion for SPCA, archetypal analysis and directional archetypal analysis. Overall, our approach offers a promising new avenue for data fusion.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis [0.7751705157998379]
The scarcity of well-annotated medical datasets requires leveraging transfer learning from broader datasets like ImageNet or pre-trained models like CLIP.
Model soups averages multiple fine-tuned models aiming to improve performance on In-Domain (ID) tasks and enhance robustness against Out-of-Distribution (OOD) datasets.
We propose a hierarchical merging approach that involves local and global aggregation of models at various levels.
arXiv Detail & Related papers (2024-03-20T06:48:48Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - MoReL: Multi-omics Relational Learning [26.484803417186384]
We propose a novel deep Bayesian generative model to efficiently infer a multi-partite graph encoding molecular interactions across heterogeneous views.
With such an optimal transport regularization in the deep Bayesian generative model, it not only allows incorporating view-specific side information, but also increases the model flexibility with the distribution-based regularization.
arXiv Detail & Related papers (2022-03-15T02:50:07Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
arXiv Detail & Related papers (2021-08-27T18:10:31Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.