論文の概要: From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
- arxiv url: http://arxiv.org/abs/2309.13599v2
- Date: Sun, 2 Jun 2024 18:01:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 20:50:48.287316
- Title: From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
- Title(参考訳): クラスタ推定からグラフ畳み込みへ - グラフに基づく半教師付き学習の再考
- Authors: Zheng Wang, Hongming Ding, Li Pan, Jianhua Li, Zhiguo Gong, Philip S. Yu,
- Abstract要約: グラフベースの半教師付き学習(GSSL)は、長い間ホットな研究トピックだった。
グラフ畳み込みネットワーク (GCN) は, 有望な性能を示す主要な技術となっている。
- 参考スコア(独自算出の注目度): 51.24526202984846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based semi-supervised learning (GSSL) has long been a hot research topic. Traditional methods are generally shallow learners, based on the cluster assumption. Recently, graph convolutional networks (GCNs) have become the predominant techniques for their promising performance. In this paper, we theoretically discuss the relationship between these two types of methods in a unified optimization framework. One of the most intriguing findings is that, unlike traditional ones, typical GCNs may not jointly consider the graph structure and label information at each layer. Motivated by this, we further propose three simple but powerful graph convolution methods. The first is a supervised method OGC which guides the graph convolution process with labels. The others are two unsupervised methods: GGC and its multi-scale version GGCM, both aiming to preserve the graph structure information during the convolution process. Finally, we conduct extensive experiments to show the effectiveness of our methods.
- Abstract(参考訳): グラフベースの半教師付き学習(GSSL)は、長い間ホットな研究トピックだった。
従来の手法は一般にクラスタの仮定に基づいて浅い学習者である。
近年, グラフ畳み込みネットワーク (GCN) が, 有望な性能を示す主要な技術となっている。
本稿では,これらの2種類の手法の関係を統一最適化フレームワークで理論的に論じる。
最も興味深い発見の1つは、従来のものとは異なり、典型的なGCNはグラフ構造と各層のラベル情報を共同で考慮していないことである。
これを動機として、我々はさらに3つの単純かつ強力なグラフ畳み込み法を提案する。
1つ目は、ラベル付きグラフ畳み込みプロセスをガイドする教師付きOGCである。
GGCとそのマルチスケールバージョンであるGGCMは、畳み込みプロセス中にグラフ構造情報を保存することを目的としている。
最後に,提案手法の有効性を示す広範囲な実験を行った。
関連論文リスト
- Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering [19.419832637206138]
本稿では, DOAGC という2つの最適化された適応グラフ再構成に基づく新しいマルチビューグラフクラスタリング手法を提案する。
主に、従来のGNNの利点を維持しつつ、異種グラフ問題に対処するために、従来のGNNに適合したグラフ構造を再構築することを目的としている。
論文 参考訳(メタデータ) (2024-10-30T12:50:21Z) - GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights [30.796414860754837]
グラフ凝縮(GC)は、元のグラフの本質的な情報を保持する、はるかに小さなグラフを学習するために設計された新興技術である。
本稿では,ノード分類における多様なGC手法を評価するための包括的フレームワークである textbfGC4NC を紹介する。
私たちの体系的な評価は、凝縮グラフがどのように振る舞うか、そしてその成功を導く重要な設計選択について、新しい洞察を与えます。
論文 参考訳(メタデータ) (2024-06-24T15:17:49Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Multi-view Contrastive Graph Clustering [12.463334005083379]
マルチビュー属性グラフデータをクラスタリングするための汎用フレームワークを提案する。
コントラスト学習の成功に触発されて,マルチビューコントラストグラフクラスタリング(MCGC)法を提案する。
私たちの単純なアプローチは、既存のディープラーニングベースの手法よりも優れています。
論文 参考訳(メタデータ) (2021-10-22T15:22:42Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
論文 参考訳(メタデータ) (2020-06-12T17:12:51Z) - K-Core based Temporal Graph Convolutional Network for Dynamic Graphs [19.237377882738063]
動的グラフのノード表現を学習するために,新しいk-coreベースの時間グラフ畳み込みネットワークであるCTGCNを提案する。
従来の動的グラフ埋め込み法とは対照的に、CTGCNは局所的な連結近接と大域的な構造的類似性の両方を保存できる。
7つの実世界のグラフに対する実験結果から、CTGCNは既存の最先端グラフの埋め込み方法よりもいくつかのタスクで優れていることが示された。
論文 参考訳(メタデータ) (2020-03-22T14:15:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。