GAN Memory with No Forgetting
- URL: http://arxiv.org/abs/2006.07543v2
- Date: Thu, 12 Nov 2020 05:31:26 GMT
- Title: GAN Memory with No Forgetting
- Authors: Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, Lawrence Carin
- Abstract summary: We propose a GAN memory for lifelong learning, which is capable of remembering a stream of datasets via generative processes.
Our GAN memory is based on recognizing that one can modulate the "style" of a GAN model to form perceptually-distant targeted generation.
- Score: 71.59992224279651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a fundamental issue in lifelong learning, catastrophic forgetting is
directly caused by inaccessible historical data; accordingly, if the data
(information) were memorized perfectly, no forgetting should be expected.
Motivated by that, we propose a GAN memory for lifelong learning, which is
capable of remembering a stream of datasets via generative processes, with
\emph{no} forgetting. Our GAN memory is based on recognizing that one can
modulate the "style" of a GAN model to form perceptually-distant targeted
generation. Accordingly, we propose to do sequential style modulations atop a
well-behaved base GAN model, to form sequential targeted generative models,
while simultaneously benefiting from the transferred base knowledge. The GAN
memory -- that is motivated by lifelong learning -- is therefore itself
manifested by a form of lifelong learning, via forward transfer and modulation
of information from prior tasks. Experiments demonstrate the superiority of our
method over existing approaches and its effectiveness in alleviating
catastrophic forgetting for lifelong classification problems. Code is available
at https://github.com/MiaoyunZhao/GANmemory_LifelongLearning.
Related papers
- Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Continual Zero-Shot Learning through Semantically Guided Generative
Random Walks [56.65465792750822]
We address the challenge of continual zero-shot learning where unseen information is not provided during training, by leveraging generative modeling.
We propose our learning algorithm that employs a novel semantically guided Generative Random Walk (GRW) loss.
Our algorithm achieves state-of-the-art performance on AWA1, AWA2, CUB, and SUN datasets, surpassing existing CZSL methods by 3-7%.
arXiv Detail & Related papers (2023-08-23T18:10:12Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Prototypical Model with Novel Information-theoretic Loss Function for
Generalized Zero Shot Learning [3.870962269034544]
Generalized zero shot learning (GZSL) is still a technical challenge of deep learning.
We address the quantification of the knowledge transfer and semantic relation from an information-theoretic viewpoint.
We propose three information-theoretic loss functions for deterministic GZSL model.
arXiv Detail & Related papers (2021-12-06T16:01:46Z) - Representation Memorization for Fast Learning New Knowledge without
Forgetting [36.55736909586313]
The ability to quickly learn new knowledge is a big step towards human-level intelligence.
We consider scenarios that require learning new classes or data distributions quickly and incrementally over time.
We propose "Memory-based Hebbian Adaptation" to tackle the two major challenges.
arXiv Detail & Related papers (2021-08-28T07:54:53Z) - ZS-IL: Looking Back on Learned ExperiencesFor Zero-Shot Incremental
Learning [9.530976792843495]
We propose an on-call transfer set to provide past experiences whenever a new class arises in the data stream.
ZS-IL demonstrates significantly better performance on the well-known datasets (CIFAR-10, Tiny-ImageNet) in both Task-IL and Class-IL settings.
arXiv Detail & Related papers (2021-03-22T22:43:20Z) - Remembering for the Right Reasons: Explanations Reduce Catastrophic
Forgetting [100.75479161884935]
We propose a novel training paradigm called Remembering for the Right Reasons (RRR)
RRR stores visual model explanations for each example in the buffer and ensures the model has "the right reasons" for its predictions.
We demonstrate how RRR can be easily added to any memory or regularization-based approach and results in reduced forgetting.
arXiv Detail & Related papers (2020-10-04T10:05:27Z) - Generative Feature Replay with Orthogonal Weight Modification for
Continual Learning [20.8966035274874]
generative replay is a promising strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting.
We propose to replay penultimate layer feature with a generative model; 2) leverage a self-supervised auxiliary task to further enhance the stability of feature.
Empirical results on several datasets show our method always achieves substantial improvement over powerful OWM.
arXiv Detail & Related papers (2020-05-07T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.