Prototypical Model with Novel Information-theoretic Loss Function for
Generalized Zero Shot Learning
- URL: http://arxiv.org/abs/2112.03134v1
- Date: Mon, 6 Dec 2021 16:01:46 GMT
- Title: Prototypical Model with Novel Information-theoretic Loss Function for
Generalized Zero Shot Learning
- Authors: Chunlin Ji, Hanchu Shen, Zhan Xiong, Feng Chen, Meiying Zhang, Huiwen
Yang
- Abstract summary: Generalized zero shot learning (GZSL) is still a technical challenge of deep learning.
We address the quantification of the knowledge transfer and semantic relation from an information-theoretic viewpoint.
We propose three information-theoretic loss functions for deterministic GZSL model.
- Score: 3.870962269034544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized zero shot learning (GZSL) is still a technical challenge of deep
learning as it has to recognize both source and target classes without data
from target classes. To preserve the semantic relation between source and
target classes when only trained with data from source classes, we address the
quantification of the knowledge transfer and semantic relation from an
information-theoretic viewpoint. To this end, we follow the prototypical model
and format the variables of concern as a probability vector. Leveraging on the
proposed probability vector representation, the information measurement such as
mutual information and entropy, can be effectively evaluated with simple closed
forms. We discuss the choice of common embedding space and distance function
when using the prototypical model. Then We propose three information-theoretic
loss functions for deterministic GZSL model: a mutual information loss to
bridge seen data and target classes; an uncertainty-aware entropy constraint
loss to prevent overfitting when using seen data to learn the embedding of
target classes; a semantic preserving cross entropy loss to preserve the
semantic relation when mapping the semantic representations to the common
space. Simulation shows that, as a deterministic model, our proposed method
obtains state of the art results on GZSL benchmark datasets. We achieve 21%-64%
improvements over the baseline model -- deep calibration network (DCN) and for
the first time demonstrate a deterministic model can perform as well as
generative ones. Moreover, our proposed model is compatible with generative
models. Simulation studies show that by incorporating with f-CLSWGAN, we obtain
comparable results compared with advanced generative models.
Related papers
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance.
In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
Generalized zero-shot learning (GZSL) aims at training a model that can generalize to unseen class data by only using auxiliary information.
One of the main challenges in GZSL is a biased model prediction toward seen classes caused by overfitting on only available seen class data during training.
We propose a two-stream autoencoder-based gating model for GZSL.
arXiv Detail & Related papers (2022-03-08T16:41:06Z) - Distributional Depth-Based Estimation of Object Articulation Models [21.046351215949525]
We propose a method that efficiently learns distributions over articulation model parameters directly from depth images.
Our core contributions include a novel representation for distributions over rigid body transformations.
We introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation.
arXiv Detail & Related papers (2021-08-12T17:44:51Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.