Modeling and Optimizing Laser-Induced Graphene
- URL: http://arxiv.org/abs/2107.14257v1
- Date: Thu, 29 Jul 2021 18:08:24 GMT
- Title: Modeling and Optimizing Laser-Induced Graphene
- Authors: Lars Kotthoff and Sourin Dey and Vivek Jain and Alexander Tyrrell and
Hud Wahab and Patrick Johnson
- Abstract summary: We provide datasets that describe the optimization of the production of laser-induced graphene.
We pose three challenges based on the datasets we provide.
We present illustrative results, along with the code used to generate them, as a starting point for interested users.
- Score: 59.8912133964006
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A lot of technological advances depend on next-generation materials, such as
graphene, which enables a raft of new applications, for example better
electronics. Manufacturing such materials is often difficult; in particular,
producing graphene at scale is an open problem. We provide a series of datasets
that describe the optimization of the production of laser-induced graphene, an
established manufacturing method that has shown great promise. We pose three
challenges based on the datasets we provide -- modeling the behavior of
laser-induced graphene production with respect to parameters of the production
process, transferring models and knowledge between different precursor
materials, and optimizing the outcome of the transformation over the space of
possible production parameters. We present illustrative results, along with the
code used to generate them, as a starting point for interested users. The data
we provide represents an important real-world application of machine learning;
to the best of our knowledge, no similar datasets are available.
Related papers
- Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced Manufacturing Process Monitoring [0.0]
This paper presents a novel approach to multimodal sensor data fusion in manufacturing processes.
We leverage contrastive learning techniques to correlate different data modalities without the need for labeled data.
Our approach facilitates downstream tasks such as process control, anomaly detection, and quality assurance.
arXiv Detail & Related papers (2024-10-29T21:52:04Z) - Automated Knowledge Graph Learning in Industrial Processes [0.0]
This paper introduces a framework for automated knowledge graph learning from time series data, specifically tailored for industrial applications.
Our framework addresses the complexities inherent in industrial datasets, transforming them into knowledge graphs that improve decision-making, process optimization, and knowledge discovery.
arXiv Detail & Related papers (2024-07-02T09:47:56Z) - SubjectDrive: Scaling Generative Data in Autonomous Driving via Subject Control [59.20038082523832]
We present SubjectDrive, the first model proven to scale generative data production in a way that could continuously improve autonomous driving applications.
We develop a novel model equipped with a subject control mechanism, which allows the generative model to leverage diverse external data sources for producing varied and useful data.
arXiv Detail & Related papers (2024-03-28T14:07:13Z) - Controllable Image Synthesis of Industrial Data Using Stable Diffusion [2.021800129069459]
We propose a new approach for reusing general-purpose pre-trained generative models on industrial data.
First, we let the model learn the new concept, entailing the novel data distribution.
Then, we force it to learn to condition the generative process, producing industrial images that satisfy well-defined topological characteristics.
arXiv Detail & Related papers (2024-01-06T08:09:24Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - A Framework for Large Scale Synthetic Graph Dataset Generation [2.248608623448951]
This work proposes a scalable synthetic graph generation tool to scale the datasets to production-size graphs.
The tool learns a series of parametric models from proprietary datasets that can be released to researchers.
We demonstrate the generalizability of the framework across a series of datasets.
arXiv Detail & Related papers (2022-10-04T22:41:33Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.