論文の概要: Low-Rank Factorization for Rank Minimization with Nonconvex Regularizers
- arxiv url: http://arxiv.org/abs/2006.07702v2
- Date: Sun, 28 Mar 2021 22:15:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 21:36:13.339481
- Title: Low-Rank Factorization for Rank Minimization with Nonconvex Regularizers
- Title(参考訳): 非凸正規化器を用いたランク最小化のための低ランク因子化
- Authors: April Sagan, John E. Mitchell
- Abstract要約: 核ノルムへの凸緩和を最小化することは、推奨システムと堅牢な主成分分析に重要である。
本研究では, ブイロとルクシロによる核プログラムのランク因数分解のための効率的なアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rank minimization is of interest in machine learning applications such as
recommender systems and robust principal component analysis. Minimizing the
convex relaxation to the rank minimization problem, the nuclear norm, is an
effective technique to solve the problem with strong performance guarantees.
However, nonconvex relaxations have less estimation bias than the nuclear norm
and can more accurately reduce the effect of noise on the measurements.
We develop efficient algorithms based on iteratively reweighted nuclear norm
schemes, while also utilizing the low rank factorization for semidefinite
programs put forth by Burer and Monteiro. We prove convergence and
computationally show the advantages over convex relaxations and alternating
minimization methods. Additionally, the computational complexity of each
iteration of our algorithm is on par with other state of the art algorithms,
allowing us to quickly find solutions to the rank minimization problem for
large matrices.
- Abstract(参考訳): ランク最小化は、リコメンダシステムやロバストな主成分分析のような機械学習応用に関心がある。
階数最小化問題である核ノルムへの凸緩和の最小化は、強力な性能保証によって問題を解決する効果的な手法である。
しかし、非凸緩和は核規範よりも推定バイアスが少なく、測定に対するノイズの影響をより正確に低減することができる。
本研究では, 繰り返し再重み付けされた核ノルムスキームに基づく効率的なアルゴリズムを開発し, また, ブラーとモンテイロによる半定値プログラムの低階分解を利用した。
我々は収束を証明し,対流緩和と交互最小化法に対する利点を計算的に示す。
さらに、我々のアルゴリズムの各反復の計算複雑性は、アートアルゴリズムの他の状態と同等であり、大きな行列に対するランク最小化問題の解を素早く見つけることができる。
関連論文リスト
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization [8.879403568685499]
パラメータの平滑化に適応的な更新戦略を導入する。
この振る舞いは、アルゴリズムを数回繰り返した後に、効果的に問題を解決するものに変えます。
すべてのイテレーションが重要なものであることを保証し、グローバルに提案された実験を証明します。
論文 参考訳(メタデータ) (2024-06-22T02:37:13Z) - A Penalty-Based Guardrail Algorithm for Non-Decreasing Optimization with Inequality Constraints [1.5498250598583487]
伝統的な数学的プログラミングの解法は制約付き最小化問題を解くのに長い計算時間を必要とする。
ペナルティに基づくガードレールアルゴリズム(PGA)を提案する。
論文 参考訳(メタデータ) (2024-05-03T10:37:34Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
統計学と機械学習における正規化技術に触発され,補完的な複合化の最小化について検討した。
予測と高い確率で、新しい過剰なリスク境界を提供する。
我々のアルゴリズムはほぼ最適であり、このクラスの問題に対して、新しいより低い複雑性境界によって証明する。
論文 参考訳(メタデータ) (2022-11-03T12:40:24Z) - Low-rank Tensor Learning with Nonconvex Overlapped Nuclear Norm
Regularization [44.54772242784423]
低ランク学習行列に対する効率的な非正規化アルゴリズムを開発した。
提案アルゴリズムは、高価な折り畳み/折り畳み問題を回避することができる。
実験の結果,提案アルゴリズムは既存の状態よりも効率的で空間が広いことがわかった。
論文 参考訳(メタデータ) (2022-05-06T07:47:10Z) - SCORE: Approximating Curvature Information under Self-Concordant
Regularization [0.0]
本稿では,新たな入力を受信するたびに最小化速度を更新する自己調和正規化アルゴリズム(GGN-SCORE)を提案する。
提案アルゴリズムはヘッセン行列の2階情報構造を利用して計算オーバーヘッドを削減する。
論文 参考訳(メタデータ) (2021-12-14T13:03:04Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。