論文の概要: Uncertainty quantification for data-driven weather models
- arxiv url: http://arxiv.org/abs/2403.13458v1
- Date: Wed, 20 Mar 2024 10:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 17:18:34.504147
- Title: Uncertainty quantification for data-driven weather models
- Title(参考訳): データ駆動気象モデルの不確かさ定量化
- Authors: Christopher Bülte, Nina Horat, Julian Quinting, Sebastian Lerch,
- Abstract要約: 本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI)-based data-driven weather forecasting models have experienced rapid progress over the last years. Recent studies, with models trained on reanalysis data, achieve impressive results and demonstrate substantial improvements over state-of-the-art physics-based numerical weather prediction models across a range of variables and evaluation metrics. Beyond improved predictions, the main advantages of data-driven weather models are their substantially lower computational costs and the faster generation of forecasts, once a model has been trained. However, most efforts in data-driven weather forecasting have been limited to deterministic, point-valued predictions, making it impossible to quantify forecast uncertainties, which is crucial in research and for optimal decision making in applications. Our overarching aim is to systematically study and compare uncertainty quantification methods to generate probabilistic weather forecasts from a state-of-the-art deterministic data-driven weather model, Pangu-Weather. Specifically, we compare approaches for quantifying forecast uncertainty based on generating ensemble forecasts via perturbations to the initial conditions, with the use of statistical and machine learning methods for post-hoc uncertainty quantification. In a case study on medium-range forecasts of selected weather variables over Europe, the probabilistic forecasts obtained by using the Pangu-Weather model in concert with uncertainty quantification methods show promising results and provide improvements over ensemble forecasts from the physics-based ensemble weather model of the European Centre for Medium-Range Weather Forecasts for lead times of up to 5 days.
- Abstract(参考訳): 人工知能(AI)ベースのデータ駆動天気予報モデルは、ここ数年で急速に進歩している。
近年の研究では、リアナリシスデータに基づいてトレーニングされたモデルが目覚ましい結果をもたらし、様々な変数や評価指標を含む、最先端の物理に基づく数値天気予報モデルよりも大幅に改善されていることが示されている。
予測の改善以外にも、データ駆動型気象モデルの主な利点は、計算コストが大幅に削減され、モデルが訓練された後に予測がより高速に生成されることである。
しかし、データ駆動の天気予報におけるほとんどの取り組みは決定論的、ポイント値の予測に限られており、予測の不確かさを定量化することは不可能であり、これは研究やアプリケーションにおける最適な意思決定に不可欠である。
我々の総合的な目的は、現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法を体系的に研究し比較することである。
具体的には,摂動によるアンサンブル予測の生成に基づく予測の不確実性を定量化するための手法と,ポストホック不確実性定量化のための統計的および機械学習手法の比較を行った。
欧州における選択された気象変数の中距離予測のケーススタディでは、パング・ウェザーモデルと不確実な定量化手法を併用して得られた確率予測が有望な結果を示し、ヨーロッパ中央気象予報センターの物理に基づくアンサンブル天気予報モデルから最大5日間のリードタイムに改善された。
関連論文リスト
- Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts has challenged our approach to numerical weather prediction。
データ駆動システムは、過去の気象の長い歴史記録から学ぶことによって、将来の天気を予測するために訓練されている。
そこで我々は,ニューラルネットワークをトレーニングし,過去の観測から将来の天気を予測する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T12:23:26Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
スコアベース拡散モデルは、多くの依存変数上の確率分布をモデル化するための新しいアプローチを提供する。
本手法は,超解速気象予測のための拡散モデルから多くの試料を発生させることにより,日頭太陽照度予測に適用する。
論文 参考訳(メタデータ) (2023-02-01T01:32:25Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。