論文の概要: Few-shot Object Detection on Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2006.07826v2
- Date: Tue, 16 Jun 2020 03:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 13:15:15.422176
- Title: Few-shot Object Detection on Remote Sensing Images
- Title(参考訳): リモートセンシング画像における少数ショット物体検出
- Authors: Jingyu Deng, Xiang Li, Yi Fang
- Abstract要約: リモートセンシング画像におけるオブジェクト検出のための数ショットの学習手法を提案する。
我々は、YOLOv3アーキテクチャに基づいて、少数ショットオブジェクト検出モデルを構築し、マルチスケールオブジェクト検出フレームワークを開発する。
- 参考スコア(独自算出の注目度): 11.40135025181393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we deal with the problem of object detection on remote sensing
images. Previous methods have developed numerous deep CNN-based methods for
object detection on remote sensing images and the report remarkable
achievements in detection performance and efficiency. However, current
CNN-based methods mostly require a large number of annotated samples to train
deep neural networks and tend to have limited generalization abilities for
unseen object categories. In this paper, we introduce a few-shot learning-based
method for object detection on remote sensing images where only a few annotated
samples are provided for the unseen object categories. More specifically, our
model contains three main components: a meta feature extractor that learns to
extract feature representations from input images, a reweighting module that
learn to adaptively assign different weights for each feature representation
from the support images, and a bounding box prediction module that carries out
object detection on the reweighted feature maps. We build our few-shot object
detection model upon YOLOv3 architecture and develop a multi-scale object
detection framework. Experiments on two benchmark datasets demonstrate that
with only a few annotated samples our model can still achieve a satisfying
detection performance on remote sensing images and the performance of our model
is significantly better than the well-established baseline models.
- Abstract(参考訳): 本稿では,リモートセンシング画像における物体検出の問題に対処する。
従来,リモートセンシング画像における物体検出のためのディープCNN法が多数開発されており,検出性能と効率性に優れた成果が報告されている。
しかし、現在のcnnベースの手法では、ディープニューラルネットワークを訓練するために多くの注釈付きサンプルが必要であり、見えないオブジェクトカテゴリの一般化能力は限られている。
本稿では,リモートセンシング画像に対して,未確認のオブジェクトカテゴリに対して,アノテーション付きサンプルを少数用意したオブジェクト検出手法を提案する。
具体的には、入力画像から特徴表現を抽出するメタ特徴抽出器と、サポート画像から各特徴表現に対して異なる重みを適応的に割り当てることを学ぶリウェイトモジュールと、再重み付き特徴マップ上でオブジェクト検出を行うバウンディングボックス予測モジュールの3つの主要コンポーネントを含む。
我々は、YOLOv3アーキテクチャに基づいて、少数ショットオブジェクト検出モデルを構築し、マルチスケールオブジェクト検出フレームワークを開発する。
2つのベンチマークデータセットの実験では、いくつかの注釈付きサンプルだけで、我々のモデルはリモートセンシング画像上で満足な検出性能を達成でき、我々のモデルの性能は、確立されたベースラインモデルよりも大幅に向上している。
関連論文リスト
- Few-shot target-driven instance detection based on open-vocabulary object detection models [1.0749601922718608]
オープンボキャブラリオブジェクト検出モデルは、同じ潜在空間において、より近い視覚的およびテキスト的概念をもたらす。
テキスト記述を必要とせずに,後者をワンショットあるいは少数ショットのオブジェクト認識モデルに変換する軽量な手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T14:03:15Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
リモートセンシングの分野では、FSOD(Few-shot Object Detection)が注目されている。
本稿では,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) という,リモートセンシングのための新しいFSOD法を提案する。
具体的には、従来の水平有界ボックスの代わりに指向的有界ボックスを用いて、任意指向の空中オブジェクトのより優れた特徴表現を学習する。
論文 参考訳(メタデータ) (2024-03-20T08:15:18Z) - Exploring Robust Features for Few-Shot Object Detection in Satellite
Imagery [17.156864650143678]
従来の2段階アーキテクチャに基づく数発の物体検出器を開発した。
大規模な事前訓練モデルを使用して、クラス参照の埋め込みやプロトタイプを構築する。
課題と稀なオブジェクトを含む2つのリモートセンシングデータセットの評価を行う。
論文 参考訳(メタデータ) (2024-03-08T15:20:27Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
周囲のカメラで3Dオブジェクトを検出することは、自動運転にとって有望な方向だ。
マルチカメラオブジェクト検出のための簡易ベースラインであるSimMODを提案する。
我々は, nuScenes の3次元オブジェクト検出ベンチマークにおいて, SimMOD の有効性を示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-08-22T03:38:01Z) - Multi-patch Feature Pyramid Network for Weakly Supervised Object
Detection in Optical Remote Sensing Images [39.25541709228373]
マルチパッチ特徴ピラミッドネットワーク(MPFP-Net)を用いたオブジェクト検出のための新しいアーキテクチャを提案する。
MPFP-Netは、トレーニング中の最も差別的なパッチのみを追求する現在のモデルとは異なる。
残余値の正則化と核融合遷移層を厳密にノルム保存する有効な方法を提案する。
論文 参考訳(メタデータ) (2021-08-18T09:25:39Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
仮想深度で画像を合成することでトレーニングデータを増強するレンダリングモジュールを提案する。
レンダリングモジュールは、RGB画像と対応するスパース深度画像とを入力として、さまざまなフォトリアリスティック合成画像を出力する。
さらに,深度推定タスクを通じて共同で最適化することで,検出モデルを改善する補助モジュールを導入する。
論文 参考訳(メタデータ) (2021-07-28T11:00:47Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Few-shot Object Detection with Feature Attention Highlight Module in
Remote Sensing Images [10.92844145381214]
本報告では, ごく少数の例に基づいて, 新規な物体を検出するために設計された, 数発の物体検出器を提案する。
我々のモデルは、特徴抽出器、特徴強調強調モジュール、および2段階検出バックエンドで構成されている。
提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2020-09-03T12:38:49Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。