Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
- URL: http://arxiv.org/abs/2006.08242v3
- Date: Mon, 2 Nov 2020 09:26:53 GMT
- Title: Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
- Authors: Thomas M. Sutter, Imant Daunhawer, Julia E. Vogt
- Abstract summary: We propose a novel, efficient objective function that utilizes the Jensen-Shannon divergence for multiple distributions.
It simultaneously approximates the unimodal and joint multimodal posteriors directly via a dynamic prior.
In extensive experiments, we demonstrate the advantage of the proposed mmJSD model compared to previous work in unsupervised, generative learning tasks.
- Score: 20.23920009396818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from different data types is a long-standing goal in machine
learning research, as multiple information sources co-occur when describing
natural phenomena. However, existing generative models that approximate a
multimodal ELBO rely on difficult or inefficient training schemes to learn a
joint distribution and the dependencies between modalities. In this work, we
propose a novel, efficient objective function that utilizes the Jensen-Shannon
divergence for multiple distributions. It simultaneously approximates the
unimodal and joint multimodal posteriors directly via a dynamic prior. In
addition, we theoretically prove that the new multimodal JS-divergence (mmJSD)
objective optimizes an ELBO. In extensive experiments, we demonstrate the
advantage of the proposed mmJSD model compared to previous work in
unsupervised, generative learning tasks.
Related papers
- Learning Multimodal Latent Generative Models with Energy-Based Prior [3.6648642834198797]
We propose a novel framework that integrates the latent generative model with the EBM.
This approach results in a more expressive and informative prior, better-capturing of information across multiple modalities.
arXiv Detail & Related papers (2024-09-30T01:38:26Z) - BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Multi-modal Latent Diffusion [8.316365279740188]
Multi-modal Variational Autoencoders are a popular family of models that aim to learn a joint representation of the different modalities.
Existing approaches suffer from a coherence-quality tradeoff, where models with good generation quality lack generative coherence across modalities.
We propose a novel method that uses a set of independently trained, uni-modal, deterministic autoencoders.
arXiv Detail & Related papers (2023-06-07T14:16:44Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
This paper presents a novel variational method on sets called the Set Multimodal VAE (SMVAE) for learning a multimodal latent space.
By modeling the joint-modality posterior distribution directly, the proposed SMVAE learns to exchange information between multiple modalities and compensate for the drawbacks caused by factorization.
arXiv Detail & Related papers (2022-12-19T23:50:19Z) - Multimodal Adversarially Learned Inference with Factorized
Discriminators [10.818838437018682]
We propose a novel approach to generative modeling of multimodal data based on generative adversarial networks.
To learn a coherent multimodal generative model, we show that it is necessary to align different encoder distributions with the joint decoder distribution simultaneously.
By taking advantage of contrastive learning through factorizing the discriminator, we train our model on unimodal data.
arXiv Detail & Related papers (2021-12-20T08:18:49Z) - Generalized Multimodal ELBO [11.602089225841631]
Multiple data types naturally co-occur when describing real-world phenomena and learning from them is a long-standing goal in machine learning research.
Existing self-supervised generative models approximating an ELBO are not able to fulfill all desired requirements of multimodal models.
We propose a new, generalized ELBO formulation for multimodal data that overcomes these limitations.
arXiv Detail & Related papers (2021-05-06T07:05:00Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.