Multitask Learning with Stochastic Interpolants
- URL: http://arxiv.org/abs/2508.04605v1
- Date: Wed, 06 Aug 2025 16:25:19 GMT
- Title: Multitask Learning with Stochastic Interpolants
- Authors: Hugo Negrel, Florentin Coeurdoux, Michael S. Albergo, Eric Vanden-Eijnden,
- Abstract summary: We propose a framework for learning maps between probability distributions that broadly generalizes the time dynamics of flow and diffusion models.<n>We generalize interpolants by replacing the scalar time variable with vectors, matrices, or linear operators.<n>This approach enables the construction of versatile generative models capable of fulfilling multiple tasks without task-specific training.
- Score: 13.301909784310894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for learning maps between probability distributions that broadly generalizes the time dynamics of flow and diffusion models. To enable this, we generalize stochastic interpolants by replacing the scalar time variable with vectors, matrices, or linear operators, allowing us to bridge probability distributions across multiple dimensional spaces. This approach enables the construction of versatile generative models capable of fulfilling multiple tasks without task-specific training. Our operator-based interpolants not only provide a unifying theoretical perspective for existing generative models but also extend their capabilities. Through numerical experiments, we demonstrate the zero-shot efficacy of our method on conditional generation and inpainting, fine-tuning and posterior sampling, and multiscale modeling, suggesting its potential as a generic task-agnostic alternative to specialized models.
Related papers
- UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
We introduce bfUnistage, a unified Transformer-based framework fortemporal modeling.<n>Our work demonstrates that a task-specific vision-text can build a generalizable model fortemporal learning.<n>We also introduce a temporal module to incorporate temporal dynamics explicitly.
arXiv Detail & Related papers (2025-03-26T17:33:23Z) - Generative Modeling of Class Probability for Multi-Modal Representation Learning [7.5696616045063845]
Multi-modal understanding plays a crucial role in artificial intelligence by enabling models to jointly interpret inputs from different modalities.<n>We propose a novel class anchor alignment approach that leverages class probability distributions for multi-modal representation learning.<n>Our method, Class-anchor-ALigned generative Modeling (CALM), encodes class anchors as prompts to generate and align class probability distributions for each modality.
arXiv Detail & Related papers (2025-03-21T01:17:44Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Learning Multimodal Latent Generative Models with Energy-Based Prior [3.6648642834198797]
We propose a novel framework that integrates the latent generative model with the EBM.
This approach results in a more expressive and informative prior, better-capturing of information across multiple modalities.
arXiv Detail & Related papers (2024-09-30T01:38:26Z) - Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
Sequential models like recurrent neural networks and transformers have become standard for probabilistic time series forecasting.
Recent work explores generative approaches using diffusion or flow-based models, extending to time series imputation and forecasting.
This work proposes a novel method combining recurrent neural networks' efficiency with diffusion models' probabilistic modeling, based on interpolants and conditional generation with control features.
arXiv Detail & Related papers (2024-09-18T03:52:48Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.<n>Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
We introduce a new family of tensor network generative models for continuous data.
We benchmark the performance of this model on several synthetic and real-world datasets.
Our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
arXiv Detail & Related papers (2023-10-31T14:37:37Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Kernel Density Matrices for Probabilistic Deep Learning [8.486487001779416]
In quantum mechanics, a density matrix is the most general way to describe the state of a quantum system.
This paper introduces a novel approach to probabilistic deep learning, kernel density matrices.
It provides a simpler yet effective mechanism for representing joint probability distributions of both continuous and discrete random variables.
arXiv Detail & Related papers (2023-05-26T12:59:58Z) - Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate
Time Series Forecasting [4.131842516813833]
We introduce a novel temporal latent auto-encoder method which enables nonlinear factorization of time series.
By imposing a probabilistic latent space model, complex distributions of the input series are modeled via the decoder.
Our model achieves state-of-the-art performance on many popular multivariate datasets, with gains sometimes as high as $50%$ for several standard metrics.
arXiv Detail & Related papers (2021-01-25T22:29:40Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
We propose a novel framework for conditional generation in multimodal spaces.
It uses latent variables to model generalizable learning patterns.
At inference, the latent variables are optimized to find optimal solutions corresponding to multiple output modes.
arXiv Detail & Related papers (2020-10-07T03:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.