論文の概要: AMENet: Attentive Maps Encoder Network for Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2006.08264v2
- Date: Wed, 13 Jan 2021 15:57:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 04:37:06.650708
- Title: AMENet: Attentive Maps Encoder Network for Trajectory Prediction
- Title(参考訳): AMENet:軌道予測のための注意マップエンコーダネットワーク
- Authors: Hao Cheng, Wentong Liao, Michael Ying Yang, Bodo Rosenhahn, Monika
Sester
- Abstract要約: 軌道予測は、安全な将来の動きを計画するための応用に不可欠である。
我々は Attentive Maps Network (AMENet) というエンドツーエンド生成モデルを提案する。
AMENetはエージェントの動作と相互作用情報をエンコードし、高精度でリアルなマルチパス軌道予測を行う。
- 参考スコア(独自算出の注目度): 35.22312783822563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is critical for applications of planning safe future
movements and remains challenging even for the next few seconds in urban mixed
traffic. How an agent moves is affected by the various behaviors of its
neighboring agents in different environments. To predict movements, we propose
an end-to-end generative model named Attentive Maps Encoder Network (AMENet)
that encodes the agent's motion and interaction information for accurate and
realistic multi-path trajectory prediction. A conditional variational
auto-encoder module is trained to learn the latent space of possible future
paths based on attentive dynamic maps for interaction modeling and then is used
to predict multiple plausible future trajectories conditioned on the observed
past trajectories. The efficacy of AMENet is validated using two public
trajectory prediction benchmarks Trajnet and InD.
- Abstract(参考訳): 軌道予測は将来の安全な移動計画の応用には不可欠であり、都市混成交通の今後数秒間も挑戦を続けている。
エージェントの動作は、異なる環境における近隣エージェントの様々な振る舞いに影響される。
動作を予測するために,エージェントの動作と相互作用情報を符号化し,高精度かつリアルなマルチパス軌道予測を行う, Attentive Maps Encoder Network (AMENet) というエンドツーエンド生成モデルを提案する。
条件付き変分オートエンコーダモジュールを訓練して、相互作用モデリングのための注意動的マップに基づいて、可能性のある将来の経路の潜在空間を学習し、観測された過去の軌道上に条件付けられた複数の妥当な将来の軌道を予測する。
AMENetの有効性は、TrajnetとInDの2つの公開軌道予測ベンチマークを用いて検証される。
関連論文リスト
- Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
軌道予測は、交通参加者の将来の動きを予測することを目的として、自動運転に不可欠である。
伝統的な方法は通常、エージェントの軌道に関する全体論的推論を行い、エージェント間の難易度の違いを無視する。
本稿では,エージェント間の予測難易度差を利用した,DGFNet(DifficultyGuided Feature Enhancement)を提案する。
論文 参考訳(メタデータ) (2024-07-26T07:04:30Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of
Dynamic Agents [10.869902339190949]
本稿では,レーンアウェア予測 (lapred) ネットワークと呼ばれる新しい予測モデルを提案する。
LaPredは、セマンティックマップから抽出されたインスタンスレベルのレーンエンティティを使用して、マルチモーダルな将来の軌跡を予測する。
公開nuScenesとArgoverseデータセットで実施された実験は、提案したLaPred法が既存の予測モデルを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2021-04-01T04:33:36Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
我々は移動エージェントのための目標駆動軌道予測フレームワークを開発した。
我々は、車や歩行者の軌道予測をベンチマークする。
私たちはArgoverse Forecasting、InterAction、Stanford Drone、および社内のPedestrian-at-Intersectionデータセットの最先端を達成しています。
論文 参考訳(メタデータ) (2020-08-19T06:52:46Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Physically constrained short-term vehicle trajectory forecasting with
naive semantic maps [6.85316573653194]
本稿では,エージェントの一般的な動きだけでなく,意味地図から関連する道路特徴を抽出する学習モデルを提案する。
我々は,道路境界を考慮した将来の動きを予測できるだけでなく,当初の訓練よりも長い時間的地平線の軌道を効果的かつ正確に予測できることを示した。
論文 参考訳(メタデータ) (2020-06-09T09:52:44Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。