論文の概要: Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data
- arxiv url: http://arxiv.org/abs/2407.12669v1
- Date: Wed, 17 Jul 2024 15:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 16:35:48.567610
- Title: Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data
- Title(参考訳): 合成データを用いたプライバシ保存癌分類の有用性向上
- Authors: Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir,
- Abstract要約: 深層学習は、乳がん検出において放射線科医を補助する大きな可能性を秘めている。
最適なモデルパフォーマンスを達成することは、データの可用性と共有の制限によって妨げられます。
従来のディープラーニングモデルでは、センシティブなトレーニング情報を不注意にリークすることができる。
この研究は、プライバシー保護のディープラーニング技術の有用性の定量化を探求するこれらの課題に対処する。
- 参考スコア(独自算出の注目度): 5.448470199971472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning holds immense promise for aiding radiologists in breast cancer detection. However, achieving optimal model performance is hampered by limitations in availability and sharing of data commonly associated to patient privacy concerns. Such concerns are further exacerbated, as traditional deep learning models can inadvertently leak sensitive training information. This work addresses these challenges exploring and quantifying the utility of privacy-preserving deep learning techniques, concretely, (i) differentially private stochastic gradient descent (DP-SGD) and (ii) fully synthetic training data generated by our proposed malignancy-conditioned generative adversarial network. We assess these methods via downstream malignancy classification of mammography masses using a transformer model. Our experimental results depict that synthetic data augmentation can improve privacy-utility tradeoffs in differentially private model training. Further, model pretraining on synthetic data achieves remarkable performance, which can be further increased with DP-SGD fine-tuning across all privacy guarantees. With this first in-depth exploration of privacy-preserving deep learning in breast imaging, we address current and emerging clinical privacy requirements and pave the way towards the adoption of private high-utility deep diagnostic models. Our reproducible codebase is publicly available at https://github.com/RichardObi/mammo_dp.
- Abstract(参考訳): 深層学習は、乳がん検出において放射線科医を補助する大きな可能性を秘めている。
しかし、最適なモデル性能を達成するには、患者プライバシの懸念に関連するデータの可用性と共有の制限が伴う。
このような懸念はさらに悪化しており、従来のディープラーニングモデルでは、センシティブなトレーニング情報を不注意にリークすることができる。
この研究は、プライバシー保護の深層学習技術の有用性を探究し、定量化するこれらの課題に対処する。
(i)個人確率勾配勾配勾配(DP-SGD)と
(II) 提案した悪性度条件付き生成対向ネットワークによって生成された完全合成トレーニングデータ。
本手法は, トランスモデルを用いて, 乳房腫瘤の下流悪性度分類を用いて評価する。
実験結果から, 合成データ拡張は, 差分プライベートモデルトレーニングにおいて, プライバシとユーティリティのトレードオフを改善することができることが示された。
さらに、合成データに対するモデル事前トレーニングは、すべてのプライバシ保証に関するDP-SGDの微調整によってさらに向上する。
乳房画像におけるプライバシー保護の深層学習に関するこの調査で、我々は現在および新たな臨床プライバシー要件に対処し、プライベートな高ユーティリティな深層診断モデルの導入に向けた道を開く。
私たちの再現可能なコードベースはhttps://github.com/RichardObi/mammo_dp.comで公開されています。
関連論文リスト
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - PATE-TripleGAN: Privacy-Preserving Image Synthesis with Gaussian Differential Privacy [4.586288671392977]
PATE-TripleGANというプライバシ保護トレーニングフレームワークを提案する。
ラベル付きデータへの依存を減らすために、ラベル付きデータの事前分類を行う分類器が組み込まれている。
PATE-TripleGANは、トレーニングデータのプライバシを確保しながら、高品質なラベル付きイメージデータセットを生成することができる。
論文 参考訳(メタデータ) (2024-04-19T09:22:20Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Differentially Private Synthetic Data Generation via
Lipschitz-Regularised Variational Autoencoders [3.7463972693041274]
生成モデルが個々のトレーニング記録の多くの詳細を記憶する傾向があることは、しばしば見落とされがちである。
本稿では,生成モデルにおける本質を直接活用するデータ生成手法について検討する。
論文 参考訳(メタデータ) (2023-04-22T07:24:56Z) - Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging [47.99192239793597]
我々は,AIモデルのプライバシ保護トレーニングが,非プライベートトレーニングと比較して精度と公平性に与える影響を評価した。
我々の研究は、実際の臨床データセットの困難な現実的な状況下では、診断深層学習モデルのプライバシー保護トレーニングは、優れた診断精度と公正さで可能であることを示しています。
論文 参考訳(メタデータ) (2023-02-03T09:49:13Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
そこで我々はDP-Sinkhornを提案する。DP-Sinkhornは個人データからデータ分布を差分プライバシで学習するための新しいトランスポートベース生成手法である。
差分的にプライベートな生成モデルを訓練するための既存のアプローチとは異なり、我々は敵の目的に頼らない。
論文 参考訳(メタデータ) (2021-11-01T18:10:21Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
フェデレートラーニング(FL)のような協調機械学習技術は、データ転送なしで効果的に大規模なデータセット上でモデルのトレーニングを可能にする。
近年のイニシアチブでは、FLで訓練されたセグメンテーションモデルが、局所的に訓練されたモデルと同様のパフォーマンスを達成できることが示されている。
しかし、FLは完全なプライバシ保護技術ではなく、プライバシ中心の攻撃は秘密の患者データを開示することができる。
論文 参考訳(メタデータ) (2021-07-06T12:57:32Z) - DataLens: Scalable Privacy Preserving Training via Gradient Compression
and Aggregation [15.63770709526671]
スケーラブルなプライバシー保護生成モデルDataLENSを提案します。
その結果,DATALENSは他のベースラインDP生成モデルよりも優れていた。
DataLENSの主要なビルディングブロックの一つである提案されたTOPAGGアプローチをDP SGDトレーニングに適応させます。
論文 参考訳(メタデータ) (2021-03-20T06:14:19Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。