Cryptotree: fast and accurate predictions on encrypted structured data
- URL: http://arxiv.org/abs/2006.08299v1
- Date: Mon, 15 Jun 2020 11:48:01 GMT
- Title: Cryptotree: fast and accurate predictions on encrypted structured data
- Authors: Daniel Huynh
- Abstract summary: Homomorphic Encryption (HE) is acknowledged for its ability to allow computation on encrypted data, where both the input and output are encrypted.
We propose Cryptotree, a framework that enables the use of Random Forests (RF), a very powerful learning procedure compared to linear regression.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applying machine learning algorithms to private data, such as financial or
medical data, while preserving their confidentiality, is a difficult task.
Homomorphic Encryption (HE) is acknowledged for its ability to allow
computation on encrypted data, where both the input and output are encrypted,
which therefore enables secure inference on private data. Nonetheless, because
of the constraints of HE, such as its inability to evaluate non-polynomial
functions or to perform arbitrary matrix multiplication efficiently, only
inference of linear models seem usable in practice in the HE paradigm so far.
In this paper, we propose Cryptotree, a framework that enables the use of
Random Forests (RF), a very powerful learning procedure compared to linear
regression, in the context of HE. To this aim, we first convert a regular RF to
a Neural RF, then adapt this to fit the HE scheme CKKS, which allows HE
operations on real values. Through SIMD operations, we are able to have quick
inference and prediction results better than the original RF on encrypted data.
Related papers
- Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
Encrypted computation opens up promising avenues across a plethora of application domains.
In particular, Arithmetic homomorphic encryption is a natural fit for cloud-based computational services.
This paper presents an encrypted system identification service enabled by a reliable encrypted solution to at least squares problems.
arXiv Detail & Related papers (2024-10-27T20:00:04Z) - HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption [4.164336621664897]
HETAL is an efficient Homomorphic Encryption based Transfer Learning algorithm.
We propose an encrypted matrix multiplication algorithm, which is 1.8 to 323 times faster than prior methods.
Experiments show total training times of 567-3442 seconds, which is less than an hour.
arXiv Detail & Related papers (2024-03-21T03:47:26Z) - When approximate design for fast homomorphic computation provides
differential privacy guarantees [0.08399688944263842]
Differential privacy (DP) and cryptographic primitives are popular countermeasures against privacy attacks.
In this paper, we design SHIELD, a probabilistic approximation algorithm for the argmax operator.
Even if SHIELD could have other applications, we here focus on one setting and seamlessly integrate it in the SPEED collaborative training framework.
arXiv Detail & Related papers (2023-04-06T09:38:01Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
Privacy-preserving inference of transformer models is on the demand of cloud service users.
We introduce $textitTHE-X$, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models.
arXiv Detail & Related papers (2022-06-01T03:49:18Z) - Efficient Encrypted Inference on Ensembles of Decision Trees [21.570003967858355]
Data privacy concerns often prevent the use of cloud-based machine learning services for sensitive personal data.
We propose a framework to transfer knowledge extracted by complex decision tree ensembles to shallow neural networks.
Our system is highly scalable and can perform efficient inference on batched encrypted (134 bits of security) data with amortized time in milliseconds.
arXiv Detail & Related papers (2021-03-05T01:06:30Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
arXiv Detail & Related papers (2020-10-07T03:34:01Z) - AIN: Fast and Accurate Sequence Labeling with Approximate Inference
Network [75.44925576268052]
The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches.
Exact probabilistic inference algorithms are typically applied in training and prediction stages of the CRF model.
We propose to employ a parallelizable approximate variational inference algorithm for the CRF model.
arXiv Detail & Related papers (2020-09-17T12:18:43Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z) - Privacy-Preserving Gaussian Process Regression -- A Modular Approach to
the Application of Homomorphic Encryption [4.1499725848998965]
Homomorphic encryption (FHE) allows data to be computed on whilst encrypted.
Some commonly used machine learning algorithms, such as Gaussian process regression, are poorly suited to FHE.
We show that a modular approach, which applies FHE to only the sensitive steps of a workflow that need protection, allows one party to make predictions on their data.
arXiv Detail & Related papers (2020-01-28T11:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.