論文の概要: ETHOS: an Online Hate Speech Detection Dataset
- arxiv url: http://arxiv.org/abs/2006.08328v2
- Date: Tue, 6 Jul 2021 07:25:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 09:18:11.299808
- Title: ETHOS: an Online Hate Speech Detection Dataset
- Title(参考訳): ETHOS: オンラインヘイトスピーチ検出データセット
- Authors: Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos, Grigorios Tsoumakas
- Abstract要約: 本稿では,YouTube と Reddit のコメントに基づいて,Final-Eight クラウドソーシングプラットフォームを用いて検証した,バイナリとマルチラベルの2種類のテキストデータセットである 'ETHOS' を紹介する。
我々の重要な前提は、そのような時間のかかるプロセスから少量のラベル付きデータを入手しても、調査対象の素材でヘイトスピーチの発生を保証できるということである。
- 参考スコア(独自算出の注目度): 6.59720246184989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online hate speech is a recent problem in our society that is rising at a
steady pace by leveraging the vulnerabilities of the corresponding regimes that
characterise most social media platforms. This phenomenon is primarily fostered
by offensive comments, either during user interaction or in the form of a
posted multimedia context. Nowadays, giant corporations own platforms where
millions of users log in every day, and protection from exposure to similar
phenomena appears to be necessary in order to comply with the corresponding
legislation and maintain a high level of service quality. A robust and reliable
system for detecting and preventing the uploading of relevant content will have
a significant impact on our digitally interconnected society. Several aspects
of our daily lives are undeniably linked to our social profiles, making us
vulnerable to abusive behaviours. As a result, the lack of accurate hate speech
detection mechanisms would severely degrade the overall user experience,
although its erroneous operation would pose many ethical concerns. In this
paper, we present 'ETHOS', a textual dataset with two variants: binary and
multi-label, based on YouTube and Reddit comments validated using the
Figure-Eight crowdsourcing platform. Furthermore, we present the annotation
protocol used to create this dataset: an active sampling procedure for
balancing our data in relation to the various aspects defined. Our key
assumption is that, even gaining a small amount of labelled data from such a
time-consuming process, we can guarantee hate speech occurrences in the
examined material.
- Abstract(参考訳): オンラインヘイトスピーチは、ソーシャルメディアプラットフォームを特徴付ける、対応する政権の脆弱性を活用することで、着実に成長している社会の最近の問題である。
この現象は、主にユーザインタラクション中またはポストされたマルチメディアコンテキストの形で、攻撃的なコメントによって育まれます。
現在、大企業は、何百万人ものユーザーが毎日ログインするプラットフォームを所有しており、対応する法律に準拠し、高いレベルのサービス品質を維持するためには、同様の現象への暴露から保護する必要がある。
関連コンテンツのアップロードを検知し防止するためのロバストで信頼性の高いシステムは、デジタル相互接続された社会に大きな影響を与えるだろう。
日常生活のいくつかの側面は、社会的プロフィールと不可避なつながりがあり、乱暴な行動に弱い。
その結果、正確なヘイトスピーチ検出機構の欠如は、ユーザー体験全体を著しく悪化させるが、誤った操作は多くの倫理的懸念を生じさせる。
本稿では,youtube と reddit のクラウドソーシングプラットフォームを用いて検証されたコメントに基づいて,バイナリとマルチラベルの2つの変種からなるテキストデータセットである 'ethos' を提案する。
さらに,本データセットの作成に使用されるアノテーションプロトコルについて述べる。
このような時間的消費過程から少量のラベル付きデータを得ることさえも、試験材料におけるヘイトスピーチの発生を保証できると仮定する。
関連論文リスト
- A Hate Speech Moderated Chat Application: Use Case for GDPR and DSA Compliance [0.0]
本研究は、コンテンツモデレーションプロセスに法的・倫理的推論を実装する新しい応用法を提案する。
GPT-3.5やSolid Pods,ルール言語Provaといった技術を使って,オンラインコミュニケーションの基本となる2つのユースケースを提示し,実装する。
この研究は、ヘイトスピーチの法的および倫理的定義の異なる範囲で推論するための新しいアプローチを提案し、ヘイトスピーチに適合するカウンターを計画する。
論文 参考訳(メタデータ) (2024-10-10T08:28:38Z) - Empirical Evaluation of Public HateSpeech Datasets [0.0]
ソーシャルメディアプラットフォームは、ヘイトスピーチ検出のための機械学習アルゴリズムのトレーニングと評価に使用されるデータセットを生成するために広く利用されている。
既存の公開データセットには多くの制限があり、これらのアルゴリズムの効果的な訓練を妨げ、不正確なヘイトスピーチ分類につながる。
この研究は、ヘイトスピーチ検出のためのより正確で信頼性の高い機械学習モデルの開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-06-27T11:20:52Z) - Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
本研究は,ライブストリーミングプラットフォーム上での会話における規範違反を検出することを目的とした,最初のNLP研究である。
ライブストリームチャットにおける標準違反カテゴリを定義し、Twitchから4,583のコメントを注釈付けします。
以上の結果から,適切なコンテキスト情報がモデレーション性能を35%向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-18T05:58:27Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Hate Speech and Offensive Language Detection using an Emotion-aware
Shared Encoder [1.8734449181723825]
ヘイトスピーチと攻撃的言語検出に関する既存の研究は、事前学習されたトランスフォーマーモデルに基づいて有望な結果をもたらす。
本稿では,他コーパスから抽出した外的感情特徴を組み合わせたマルチタスク共同学習手法を提案する。
以上の結果から,感情的な知識が,データセット間のヘイトスピーチや攻撃的言語をより確実に識別する上で有効であることが示唆された。
論文 参考訳(メタデータ) (2023-02-17T09:31:06Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - CRUSH: Contextually Regularized and User anchored Self-supervised Hate
speech Detection [6.759148939470331]
CRUSHは,ユーザが選択した自己スーパービジョンと文脈正規化を用いたヘイトスピーチ検出のためのフレームワークである。
提案手法は,2種類のタスクと複数のポピュラーなソーシャルメディアデータセットに対して,過去のアプローチよりも1~12%向上する。
論文 参考訳(メタデータ) (2022-04-13T13:51:51Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Detecting Online Hate Speech: Approaches Using Weak Supervision and
Network Embedding Models [2.3322477552758234]
本研究では,ヘイトフルユーザを定量的に発見する弱監督型深層学習モデルを提案する。
我々は、19.2Mの投稿において、我々のモデルを評価し、我々の弱い監督モデルは、間接的に憎悪的な相互作用を識別するベースラインモデルよりも優れていることを示す。
また,Gabにおける2種類のユーザインタラクション(引用と応答)と,弱監督モデルからのインタラクションスコアをエッジウェイトとして分析し,ヘイトフルユーザを予測する。
論文 参考訳(メタデータ) (2020-07-24T18:13:52Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
この研究は、COVID-19トピックに関するGab内のインタラクションパターンの特徴を提供する。
疑わしい、信頼できるコンテンツに対する社会的反応には、統計的に強い違いはない。
本研究は,協調した不正確な行動の理解と情報操作の早期警戒に関する知見を提供する。
論文 参考訳(メタデータ) (2020-06-03T11:34:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。