論文の概要: Internal Incoherency Scores for Constraint-based Causal Discovery Algorithms
- arxiv url: http://arxiv.org/abs/2502.14719v1
- Date: Thu, 20 Feb 2025 16:44:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:32.778667
- Title: Internal Incoherency Scores for Constraint-based Causal Discovery Algorithms
- Title(参考訳): 制約に基づく因果探索アルゴリズムにおける内部不整合スコア
- Authors: Sofia Faltenbacher, Jonas Wahl, Rebecca Herman, Jakob Runge,
- Abstract要約: 仮説違反や有限サンプル誤りの検証が可能な内部コヒーレンシスコアを提案する。
シミュレーションおよび実世界のデータセットを用いて,PCアルゴリズムにおけるコヒーレンシースコアについて述べる。
- 参考スコア(独自算出の注目度): 12.524536193679124
- License:
- Abstract: Causal discovery aims to infer causal graphs from observational or experimental data. Methods such as the popular PC algorithm are based on conditional independence testing and utilize enabling assumptions, such as the faithfulness assumption, for their inferences. In practice, these assumptions, as well as the functional assumptions inherited from the chosen conditional independence test, are typically taken as a given and not further tested for their validity on the data. In this work, we propose internal coherency scores that allow testing for assumption violations and finite sample errors, whenever detectable without requiring ground truth or further statistical tests. We provide a complete classification of erroneous results, including a distinction between detectable and undetectable errors, and prove that the detectable erroneous results can be measured by our scores. We illustrate our coherency scores on the PC algorithm with simulated and real-world datasets, and envision that testing for internal coherency can become a standard tool in applying constraint-based methods, much like a suite of tests is used to validate the assumptions of classical regression analysis.
- Abstract(参考訳): 因果発見は、観測データや実験データから因果グラフを推測することを目的としている。
一般的なPCアルゴリズムのような手法は条件付き独立性テストに基づいており、その推論に忠実性仮定のような仮定を有効に活用している。
実際には、これらの仮定は、選択された条件付き独立テストから継承された機能的仮定と同様に、通常、与えられたものとされ、データに対する妥当性についてさらにテストされない。
本研究では,仮定違反や有限サンプル誤りの検定が可能な内部コヒーレンシスコアを提案する。
検出可能な誤りと検出不能な誤りの区別を含む誤結果の完全な分類を行い,検出可能な誤結果がスコアによって測定可能であることを証明した。
シミュレーションおよび実世界のデータセットを用いてPCアルゴリズム上でのコヒーレンシースコアを説明し、古典回帰分析の仮定を検証するためにテストスイートのように制約ベースの手法を適用する上で、内部コヒーレンシーのテストが標準ツールとなることを想定する。
関連論文リスト
- Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
我々は,大言語モデルが一般ドメインでの応答をいつ無視すべきかを決定するための,原則化された手順を開発する。
我々は、幻覚率(エラー率)の厳密な理論的保証の恩恵を受けるため、共形予測手法を活用して、禁忌手順を開発する。
実験によって得られた共形禁忌法は, 種々の閉書, オープンドメイン生成質問応答データセットに, 幻覚率を確実に拘束する。
論文 参考訳(メタデータ) (2024-04-04T11:32:03Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - Assumption violations in causal discovery and the robustness of score matching [38.60630271550033]
本稿では、最近の因果発見手法の観測データに対する実証的性能を広範囲にベンチマークする。
スコアマッチングに基づく手法は、推定されたグラフの偽陽性と偽陰性率において驚くべき性能を示すことを示す。
本論文は,因果発見手法の評価のための新しい基準を策定することを願っている。
論文 参考訳(メタデータ) (2023-10-20T09:56:07Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
実験と観測を組み合わせた二重機械学習手法を提案する。
我々の枠組みは、より軽度の仮定の下で、外部の妥当性と無知の違反を検査する。
論文 参考訳(メタデータ) (2023-07-04T02:53:11Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Null Hypothesis Test for Anomaly Detection [0.0]
我々は、背景のみの仮説を除外した仮説テストを用いて、異常検出のための分類不要ラベルの使用を拡張した。
2つの識別されたデータセット領域の統計的独立性をテストすることで、固定された異常スコアのカットや、各領域間の背景推定の外挿に頼ることなく、背景のみの仮説を除外することができる。
論文 参考訳(メタデータ) (2022-10-05T13:03:55Z) - Model-Free Sequential Testing for Conditional Independence via Testing
by Betting [8.293345261434943]
提案されたテストでは、任意の依存関係構造を持つ入ってくるi.d.データストリームを分析できる。
重要な結果が検出されれば,オンライン上でのデータポイントの処理を可能とし,データ取得を停止する。
論文 参考訳(メタデータ) (2022-10-01T20:05:33Z) - Private Sequential Hypothesis Testing for Statisticians: Privacy, Error
Rates, and Sample Size [24.149533870085175]
我々は、Renyi差分プライバシーとして知られる、差分プライバシーのわずかな変種の下で、シーケンシャル仮説テスト問題を研究する。
我々は,Wald's Sequential Probability Ratio Test (SPRT)に基づく新たなプライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-10T04:15:50Z) - Model-agnostic out-of-distribution detection using combined statistical
tests [15.27980070479021]
本稿では,学習された生成モデルを用いた分布外検出のための簡易な手法を提案する。
古典的パラメトリックテスト(ラオのスコアテスト)と最近導入された定性テストを組み合わせる。
その単純さと汎用性にもかかわらず、これらの手法はモデル固有のアウト・オブ・ディストリビューション検出アルゴリズムと競合することがある。
論文 参考訳(メタデータ) (2022-03-02T13:32:09Z) - Cross-validation Confidence Intervals for Test Error [83.67415139421448]
この研究は、クロスバリデーションのための中心極限定理と、学習アルゴリズムの弱い安定性条件下での分散の一貫した推定器を開発する。
結果は、一般的な1対1のクロスバリデーションの選択にとって、初めてのものだ。
論文 参考訳(メタデータ) (2020-07-24T17:40:06Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。