Bell's Theorem, Quantum Probabilities, and Superdeterminism
- URL: http://arxiv.org/abs/2006.08609v3
- Date: Fri, 23 Oct 2020 18:31:42 GMT
- Title: Bell's Theorem, Quantum Probabilities, and Superdeterminism
- Authors: Eddy Keming Chen
- Abstract summary: I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism.
The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this short survey article, I discuss Bell's theorem and some strategies
that attempt to avoid the conclusion of non-locality. I focus on two that
intersect with the philosophy of probability: (1) quantum probabilities and (2)
superdeterminism. The issues they raised not only apply to a wide class of
no-go theorems about quantum mechanics but are also of general philosophical
interest.
Related papers
- Internal causality breaking and emergence of entanglement in the quantum realm [1.1970409518725493]
We investigate the quantum dynamics of two photonic modes coupled to each other through a beam splitting.
We find that when the initial wave function of one mode is different from a wave packet obeying the minimum Heisenberg uncertainty, the causality in the time-evolution of each mode is internally broken.
arXiv Detail & Related papers (2024-03-14T13:16:00Z) - On probabilities in quantum mechanics [0.0]
I first take up the probability concept in the QBist school, and then give my own arguments for the Born formula for calculating quantum probabilities.
In that connection I also sketch some consequences of my approach towards the foundation and interpretation of quantum theory.
arXiv Detail & Related papers (2024-01-31T10:20:25Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Two Quantum Entangled Cheshire Cats [14.618082583488812]
In the original thought experiment of the Quantum Cheshire Cat, the physical properties of the cat (state) can be decoupled from its quantum entities.
Here, we conceive a new thought experiment that exploits quantum entanglement with weak (value) measurement.
arXiv Detail & Related papers (2023-03-30T01:02:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Generalized Probabilistic Theories in a New Light [0.0]
A new answer to the question of why our universe is quantum mechanical rather than classical will be presented.
This paper shows that there is still a possibility that there might be a deterministic level from which our universe emerges.
arXiv Detail & Related papers (2021-03-08T21:28:19Z) - Impossibility of creating a superposition of unknown quantum states [16.467540842571328]
We show that the existence of a protocol that superposes two unknown pure states with nonzero probability leads to violation of other no-go theorems.
Such a protocol can be used to perform certain state discrimination and cloning tasks that are forbidden in quantum theory.
arXiv Detail & Related papers (2020-11-04T13:25:42Z) - Probabilistic Theories and Reconstructions of Quantum Theory (Les
Houches 2019 lecture notes) [0.0]
These lecture notes provide a basic introduction to the framework of generalized probabilistic theories (GPTs)
I present two conceivable phenomena beyond quantum: superstrong nonlocality and higher-order interference.
I summarize a reconstruction of quantum theory from the principles of Tomographic Locality, Continuous Reversibility, and the Subspace Axiom.
arXiv Detail & Related papers (2020-11-02T20:03:13Z) - Indeterminism and Undecidability [0.0]
Chaitin's follow-up to Goedel's (first) incompleteness theorem can be proved.
The main point is that Bell and others did not exploit the full empirical content of quantum mechanics.
arXiv Detail & Related papers (2020-03-07T11:06:23Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.