論文の概要: Latent Bandits Revisited
- arxiv url: http://arxiv.org/abs/2006.08714v1
- Date: Mon, 15 Jun 2020 19:24:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 02:23:30.707742
- Title: Latent Bandits Revisited
- Title(参考訳): 潜在バンド再考
- Authors: Joey Hong and Branislav Kveton and Manzil Zaheer and Yinlam Chow and
Amr Ahmed and Craig Boutilier
- Abstract要約: 潜伏盗賊問題は、学習エージェントが未知の離散潜伏状態に条件付けられた腕の報酬分布を知知する問題である。
本稿では, 上位信頼境界(UCB)とトンプソンサンプリング(Thompson sample)の両方に基づいて, この設定のための一般的なアルゴリズムを提案する。
我々はアルゴリズムの統一的な理論的解析を行い、遅延状態の数がアクションよりも小さい場合、古典的なバンディットポリシーよりも後悔度が低い。
- 参考スコア(独自算出の注目度): 55.88616813182679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A latent bandit problem is one in which the learning agent knows the arm
reward distributions conditioned on an unknown discrete latent state. The
primary goal of the agent is to identify the latent state, after which it can
act optimally. This setting is a natural midpoint between online and offline
learning---complex models can be learned offline with the agent identifying
latent state online---of practical relevance in, say, recommender systems. In
this work, we propose general algorithms for this setting, based on both upper
confidence bounds (UCBs) and Thompson sampling. Our methods are contextual and
aware of model uncertainty and misspecification. We provide a unified
theoretical analysis of our algorithms, which have lower regret than classic
bandit policies when the number of latent states is smaller than actions. A
comprehensive empirical study showcases the advantages of our approach.
- Abstract(参考訳): 潜伏包帯問題は、学習エージェントが未知の離散潜伏状態に条件付けられた腕の報酬分布を知るものである。
エージェントの主な目的は潜伏状態を特定し、その後最適に動作させることである。
この設定は、オンラインとオフラインの学習の自然な中間点であり、エージェントが潜在状態を特定してオフラインで学習することができる。
本研究では, 上位信頼境界 (UCBs) とトンプソンサンプリング (Thompson sample) に基づいて, この設定のための一般的なアルゴリズムを提案する。
我々の手法は文脈的であり、モデルの不確実性と誤特定を認識している。
我々は,潜在状態の数が動作数より小さい場合に,従来のバンディットポリシーよりも後悔が少ないアルゴリズムの統一的理論的解析を行う。
包括的な実証研究が我々のアプローチの利点を示している。
関連論文リスト
- PageRank Bandits for Link Prediction [72.61386754332776]
リンク予測は、リコメンダシステムやナレッジグラフ補完といった幅広いアプリケーションを用いたグラフ学習において重要な問題である。
本稿では,リンク予測を逐次的意思決定プロセスとして再構成し,各リンク予測インタラクションを逐次的に行う。
本稿では,PageRankとコンテキスト的帯域を結合した新しい融合アルゴリズム PRB (PageRank Bandits) を提案する。
論文 参考訳(メタデータ) (2024-11-03T02:39:28Z) - Leveraging Offline Data in Linear Latent Bandits [16.006405951752903]
我々は、$textitevery$ exchangeable and coherent stateless decision process is a latent bandit.
本稿では,この部分空間を短いオフライン軌道から保証付きで学習する方法を提案する。
LOCAL-UCBとProBALL-UCBの2つの方法を提案する。
論文 参考訳(メタデータ) (2024-05-27T16:23:34Z) - Online learning in bandits with predicted context [8.257280652461159]
エージェントがコンテキストの騒々しいバージョンにしかアクセスできない場合、コンテキスト的帯域幅の問題を考える。
この設定は、意思決定の真のコンテキストが守られない広範囲のアプリケーションによって動機付けられている。
本研究では,この設定において,軽度条件下でのサブ線形後悔保証を用いた最初のオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-26T02:33:54Z) - Last Switch Dependent Bandits with Monotone Payoff Functions [8.860629791560198]
我々は、LSDバンディット計画の近似性、すなわち、最適なアーム推進戦略を演算する(NP-hard)問題を理解するための一歩を踏み出した。
特に、この問題に対する最初の効率的な定数近似アルゴリズムを設計し、自然単調性仮定の下では、その近似が最先端にほぼ一致することを示す。
われわれは,新しい高次元緩和法や仮想状態の進化を反映する技術など,このような問題に対する新たなツールと洞察を開発する。
論文 参考訳(メタデータ) (2023-06-01T04:38:32Z) - Bandit Social Learning: Exploration under Myopic Behavior [58.75758600464338]
オンラインプラットフォーム上でのレビューによって動機付けられた社会学習のダイナミクスについて検討する。
エージェントはまとめて単純なマルチアームのバンディットプロトコルに従うが、各エージェントは探索を伴わずにミオプティカルに振る舞う。
このような振る舞いに対して,スターク学習の失敗を導出し,好意的な結果を提供する。
論文 参考訳(メタデータ) (2023-02-15T01:57:57Z) - Thompson Sampling with Virtual Helping Agents [0.0]
我々は、オンラインのシーケンシャルな意思決定の問題、すなわち、現在の知識を活用して即時パフォーマンスを最大化し、新しい情報を探索して長期的な利益を得るというトレードオフに対処する。
本稿では,マルチアームバンディット問題に対する2つのアルゴリズムを提案し,累積的後悔に関する理論的境界を提供する。
論文 参考訳(メタデータ) (2022-09-16T23:34:44Z) - Non-Stationary Latent Bandits [68.21614490603758]
非定常ユーザに対して高速なパーソナライズのための実践的アプローチを提案する。
鍵となる考え方は、この問題を潜在バンディットとみなすことであり、ユーザ行動のプロトタイプモデルがオフラインで学習され、ユーザの潜伏状態がオンラインで推論される。
我々は,非定常潜伏帯域における後悔最小化のためのトンプソンサンプリングアルゴリズムを提案し,それらを解析し,実世界のデータセット上で評価する。
論文 参考訳(メタデータ) (2020-12-01T10:31:57Z) - A New Bandit Setting Balancing Information from State Evolution and
Corrupted Context [52.67844649650687]
本稿では,2つの確立されたオンライン学習問題と包括的フィードバックを組み合わせた,逐次的意思決定方式を提案する。
任意の瞬間にプレーする最適なアクションは、エージェントによって直接観察できない基礎となる変化状態に付随する。
本稿では,レフェリーを用いて,コンテキストブレイジットとマルチアームブレイジットのポリシーを動的に組み合わせるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-16T14:35:37Z) - Robustness Guarantees for Mode Estimation with an Application to Bandits [131.21717367564963]
平均ではなく報酬分布のモードを値とするマルチアームバンディットの理論を導入する。
我々は,我々のアルゴリズムが逆雑音列による腕の摂動に頑健であることを示すシミュレーションで示す。
論文 参考訳(メタデータ) (2020-03-05T21:29:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。