Designing high-fidelity multi-qubit gates for semiconductor quantum dots
through deep reinforcement learning
- URL: http://arxiv.org/abs/2006.08813v1
- Date: Mon, 15 Jun 2020 23:08:46 GMT
- Title: Designing high-fidelity multi-qubit gates for semiconductor quantum dots
through deep reinforcement learning
- Authors: Sahar Daraeizadeh, Shavindra P. Premaratne, A. Y. Matsuura
- Abstract summary: We present a machine learning framework to design high-fidelity multi-qubit gates for quantum processors based on quantum dots in silicon.
We use the deep reinforcement learning method to design optimal control pulses to achieve high fidelity multi-qubit gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a machine learning framework to design
high-fidelity multi-qubit gates for quantum processors based on quantum dots in
silicon, with qubits encoded in the spin of single electrons. In this hardware
architecture, the control landscape is vast and complex, so we use the deep
reinforcement learning method to design optimal control pulses to achieve high
fidelity multi-qubit gates. In our learning model, a simulator models the
physical system of quantum dots and performs the time evolution of the system,
and a deep neural network serves as the function approximator to learn the
control policy. We evolve the Hamiltonian in the full state-space of the
system, and enforce realistic constraints to ensure experimental feasibility.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Symmetry-invariant quantum machine learning force fields [0.0]
We design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries.
Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning.
arXiv Detail & Related papers (2023-11-19T16:15:53Z) - Machine-learning-inspired quantum optimal control of nonadiabatic
geometric quantum computation via reverse engineering [3.3216171033358077]
We propose a promising average-fidelity-based machine-learning-inspired method to optimize the control parameters.
We implement a single-qubit gate by cat-state nonadiabatic geometric quantum computation via reverse engineering.
We demonstrate that the neural network possesses the ability to expand the model space.
arXiv Detail & Related papers (2023-09-28T14:36:26Z) - Model-free Quantum Gate Design and Calibration using Deep Reinforcement
Learning [7.683965448804695]
We propose a novel training framework using deep reinforcement learning for model-free quantum control.
The proposed framework relies only on the measurement at the end of the control process and offers the ability to find the optimal control policy.
arXiv Detail & Related papers (2023-02-05T12:36:03Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Self-Correcting Quantum Many-Body Control using Reinforcement Learning
with Tensor Networks [0.0]
We present a novel framework for efficiently controlling quantum many-body systems based on reinforcement learning (RL)
We show that RL agents are capable of finding universal controls, of learning how to optimally steer previously unseen many-body states, and of adapting control protocols on-thefly when the quantum dynamics is subject to perturbations.
arXiv Detail & Related papers (2022-01-27T20:14:09Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Reinforcement Learning for Digital Quantum Simulation [0.0]
We introduce a reinforcement learning algorithm to build optimized quantum circuits for digital quantum simulation.
We consistently obtain quantum circuits that reproduce physical observables with as little as three entangling gates for long times and large system sizes.
arXiv Detail & Related papers (2020-06-29T18:00:11Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.