Symmetry-invariant quantum machine learning force fields
- URL: http://arxiv.org/abs/2311.11362v1
- Date: Sun, 19 Nov 2023 16:15:53 GMT
- Title: Symmetry-invariant quantum machine learning force fields
- Authors: Isabel Nha Minh Le, Oriel Kiss, Julian Schuhmacher, Ivano Tavernelli
and Francesco Tacchino
- Abstract summary: We design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries.
Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning techniques are essential tools to compute efficient, yet
accurate, force fields for atomistic simulations. This approach has recently
been extended to incorporate quantum computational methods, making use of
variational quantum learning models to predict potential energy surfaces and
atomic forces from ab initio training data. However, the trainability and
scalability of such models are still limited, due to both theoretical and
practical barriers. Inspired by recent developments in geometric classical and
quantum machine learning, here we design quantum neural networks that
explicitly incorporate, as a data-inspired prior, an extensive set of
physically relevant symmetries. We find that our invariant quantum learning
models outperform their more generic counterparts on individual molecules of
growing complexity. Furthermore, we study a water dimer as a minimal example of
a system with multiple components, showcasing the versatility of our proposed
approach and opening the way towards larger simulations. Our results suggest
that molecular force fields generation can significantly profit from leveraging
the framework of geometric quantum machine learning, and that chemical systems
represent, in fact, an interesting and rich playground for the development and
application of advanced quantum machine learning tools.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Quantum Extreme Learning of molecular potential energy surfaces and force fields [5.13730975608994]
A quantum neural network is used to learn the potential energy surface and force field of molecular systems.
This particular supervised learning routine allows for resource-efficient training, consisting of a simple linear regression performed on a classical computer.
We have tested a setup that can be used to study molecules of any dimension and is optimized for immediate use on NISQ devices.
Compared to other supervised learning routines, the proposed setup requires minimal quantum resources, making it feasible for direct implementation on quantum platforms.
arXiv Detail & Related papers (2024-06-20T18:00:01Z) - Quantum Hardware-Enabled Molecular Dynamics via Transfer Learning [1.9144534010016192]
We propose a new path forward for molecular dynamics simulations on quantum hardware.
By combining transfer learning with techniques for building machine-learned potential energy surfaces, we propose a new path forward.
We demonstrate this approach by training machine learning models to predict a molecule's potential energy using Behler-Parrinello neural networks.
arXiv Detail & Related papers (2024-06-12T18:00:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Extending the reach of quantum computing for materials science with
machine learning potentials [0.3352108528371308]
We propose a strategy to extend the scope of quantum computational methods to large scale simulations using a machine learning potential.
We investigate the trainability of a machine learning potential selecting various sources of noise.
We construct the first machine learning potential from data computed on actual IBM Quantum processors for a hydrogen molecule.
arXiv Detail & Related papers (2022-03-14T15:59:30Z) - Quantum neural networks force fields generation [0.0]
We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
arXiv Detail & Related papers (2022-03-09T12:10:09Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.