論文の概要: NodeNet: A Graph Regularised Neural Network for Node Classification
- arxiv url: http://arxiv.org/abs/2006.09022v1
- Date: Tue, 16 Jun 2020 09:41:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:50:50.565321
- Title: NodeNet: A Graph Regularised Neural Network for Node Classification
- Title(参考訳): NodeNet: ノード分類のためのグラフ正規化ニューラルネットワーク
- Authors: Shrey Dabhi and Manojkumar Parmar
- Abstract要約: ほとんどのAI/ML技術は、データポイント間のリンクを排除している。
近年,グラフベースのAI/ML技術への関心が高まっている。
引用グラフのノード分類タスクを解決するために,NGL - NodeNet を用いたモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world events exhibit a high degree of interdependence and connections,
and hence data points generated also inherit the linkages. However, the
majority of AI/ML techniques leave out the linkages among data points. The
recent surge of interest in graph-based AI/ML techniques is aimed to leverage
the linkages. Graph-based learning algorithms utilize the data and related
information effectively to build superior models. Neural Graph Learning (NGL)
is one such technique that utilizes a traditional machine learning algorithm
with a modified loss function to leverage the edges in the graph structure. In
this paper, we propose a model using NGL - NodeNet, to solve node
classification task for citation graphs. We discuss our modifications and their
relevance to the task. We further compare our results with the current state of
the art and investigate reasons for the superior performance of NodeNet.
- Abstract(参考訳): 実世界の事象は高い相互依存と接続を示し、したがって生成されたデータポイントもリンクを継承する。
しかし、AI/ML技術の大部分は、データポイント間のリンクを排除している。
最近、グラフベースのAI/ML技術への関心が高まっている。
グラフベースの学習アルゴリズムは、データと関連する情報を効果的に利用し、優れたモデルを構築する。
ニューラルグラフ学習(Neural Graph Learning, NGL)は、従来の機械学習アルゴリズムと修正された損失関数を使ってグラフ構造のエッジを利用する手法である。
本稿では,引用グラフのノード分類タスクを解決するため,NGL-NodeNetを用いたモデルを提案する。
変更点とその課題との関連について論じる。
さらに、この結果と現在の技術状況を比較し、NodeNetの優れたパフォーマンスの理由を調査します。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
異種グラフニューラルネットワーク(GNN)の性能向上のためのカリキュラム学習手法の適用について検討する。
データの品質をよりよく分類するために、データの全ノードの品質を測定するLTSと呼ばれる損失認識トレーニングスケジュールを設計する。
本研究は,複雑なグラフ構造データ解析のためのHGNNの能力向上のためのカリキュラム学習の有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-29T05:44:41Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。