論文の概要: Relational Fusion Networks: Graph Convolutional Networks for Road
Networks
- arxiv url: http://arxiv.org/abs/2006.09030v2
- Date: Mon, 14 Sep 2020 14:47:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:18:06.998736
- Title: Relational Fusion Networks: Graph Convolutional Networks for Road
Networks
- Title(参考訳): リレーショナルフュージョンネットワーク:道路ネットワークのためのグラフ畳み込みネットワーク
- Authors: Tobias Skovgaard Jepsen, Christian S. Jensen, Thomas Dyhre Nielsen
- Abstract要約: グラフ畳み込みネットワーク(Graph Convolutional Networks、GCN)は、ネットワークの構造を活用可能なニューラルネットワークである。
本稿では,道路ネットワーク専用に設計された新しいタイプのGCNであるFusion Network(RFN)を紹介する。
現状のGCNは、道路ネットワーク構造を効果的に活用できず、他の道路ネットワークにうまく適用できない可能性があることを示す。
- 参考スコア(独自算出の注目度): 16.552007028623322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning techniques in the setting of road
networks holds the potential to facilitate many important intelligent
transportation applications. Graph Convolutional Networks (GCNs) are neural
networks that are capable of leveraging the structure of a network. However,
many implicit assumptions of GCNs do not apply to road networks. We introduce
the Relational Fusion Network (RFN), a novel type of GCN designed specifically
for road networks. In particular, we propose methods that outperform
state-of-the-art GCNs by 21%-40% on two machine learning tasks in road
networks. Furthermore, we show that state-of-the-art GCNs may fail to
effectively leverage road network structure and may not generalize well to
other road networks.
- Abstract(参考訳): 道路網の設定における機械学習技術の応用は、多くの重要なインテリジェント輸送アプリケーションを促進する可能性を秘めている。
グラフ畳み込みネットワーク(Graph Convolutional Networks、GCN)は、ネットワークの構造を活用可能なニューラルネットワークである。
しかし、GCNの暗黙の仮定の多くは道路網には適用されない。
本稿では,道路ネットワークに特化した新しいタイプのGCNであるRelational Fusion Network (RFN)を紹介する。
特に,道路ネットワークにおける2つの機械学習タスクにおいて,最先端GCNを21%~40%向上させる手法を提案する。
さらに,最先端のgcnは道路網構造を効果的に活用できず,他の道路網への一般化が困難であることを示す。
関連論文リスト
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
我々は,グラフニューラルネットワーク(GNN)アーキテクチャを用いて,ソースノードの集約情報を最大化する,新たなステート拡張(SA)戦略を開発した。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-30T04:34:25Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
チャネルのあらゆる変更に適応できるオンライントレーニングフレームワークを導入します。
我々のフレームワークは、非常にダイナミックなチャネル上での最近のニューラルネットワークモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-08-17T02:01:18Z) - Evolutionary Neural Cascade Search across Supernetworks [68.8204255655161]
ENCAS - Evolutionary Neural Cascade Searchを紹介する。
ENCASは、複数の事前訓練されたスーパーネットを探索するために使用することができる。
我々は、一般的なコンピュータビジョンベンチマークでEMCASをテストする。
論文 参考訳(メタデータ) (2022-03-08T11:06:01Z) - Graph Neural Networks for Communication Networks: Context, Use Cases and
Opportunities [4.4568884144849985]
グラフニューラルネットワーク(GNN)は、データが基本的にグラフとして表現される多くの分野において、優れた応用を示している。
GNNは、実際のネットワークの背後にある複雑な振る舞いを正確に学習し、再現できる新しい世代のデータ駆動モデルである。
本稿では、GNNとその通信ネットワークへの応用に関する簡単なチュートリアルを紹介する。
論文 参考訳(メタデータ) (2021-12-29T19:09:42Z) - Scaling Graph-based Deep Learning models to larger networks [2.946140899052065]
Graph Neural Networks (GNN)は、ネットワーク制御と管理のために商用製品に統合される可能性を示している。
本稿では,リンク容量の増大やリンクトラフィックの集約など,大規模ネットワークに効果的にスケール可能なGNNベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-10-04T09:04:19Z) - GDDR: GNN-based Data-Driven Routing [0.0]
グラフニューラルネットワーク(GNN)を用いたアプローチは、多層パーセプトロンアーキテクチャを用いた以前の作業と同様に、少なくとも実行できることを示した。
GNNには、トレーニングされたエージェントを、余分な作業なしで異なるネットワークトポロジに一般化できるというメリットが加えられている。
論文 参考訳(メタデータ) (2021-04-20T12:12:17Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Cognitive Radio Network Throughput Maximization with Deep Reinforcement
Learning [58.44609538048923]
RF-CRN(Radio Frequency powered Cognitive Radio Networks)は、IoT(Internet of Things)などの最新のネットワークの目と耳である可能性が高い。
自律的と考えるには、RF駆動のネットワークエンティティは、ネットワーク環境の不確実性の下でネットワークスループットを最大化するために、ローカルで決定する必要がある。
本稿では,この欠点を克服し,無線ゲートウェイがネットワークスループットを最大化するための最適なポリシーを導出できるように,深層強化学習を提案する。
論文 参考訳(メタデータ) (2020-07-07T01:49:07Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。