論文の概要: Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning
- arxiv url: http://arxiv.org/abs/2006.09205v3
- Date: Wed, 14 Oct 2020 10:58:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:05:14.561672
- Title: Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning
- Title(参考訳): 深層学習によるホルスタイン・フリース牛の視覚的識別
- Authors: William Andrew, Jing Gao, Siobhan Mullan, Neill Campbell, Andrew W
Dowsey, Tilo Burghardt
- Abstract要約: ホルシュタイン・フリーズ産の牛は、チューリングの反応拡散系から生じたものと類似した、個々の特性の白黒のコートパターンを視覚的に示す。
この研究は、畳み込みニューラルネットワークとディープメトリック学習技術を介して、個々のホルシュタイン・フリース人の視覚的検出と生体認証を自動化するために、これらの自然なマーキングを利用する。
- 参考スコア(独自算出の注目度): 8.784100314325395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Holstein-Friesian cattle exhibit individually-characteristic black and white
coat patterns visually akin to those arising from Turing's reaction-diffusion
systems. This work takes advantage of these natural markings in order to
automate visual detection and biometric identification of individual
Holstein-Friesians via convolutional neural networks and deep metric learning
techniques. Existing approaches rely on markings, tags or wearables with a
variety of maintenance requirements, whereas we present a totally hands-off
method for the automated detection, localisation, and identification of
individual animals from overhead imaging in an open herd setting, i.e. where
new additions to the herd are identified without re-training. We propose the
use of SoftMax-based reciprocal triplet loss to address the identification
problem and evaluate the techniques in detail against fixed herd paradigms. We
find that deep metric learning systems show strong performance even when many
cattle unseen during system training are to be identified and re-identified --
achieving 93.8% accuracy when trained on just half of the population. This work
paves the way for facilitating the non-intrusive monitoring of cattle
applicable to precision farming and surveillance for automated productivity,
health and welfare monitoring, and to veterinary research such as behavioural
analysis, disease outbreak tracing, and more. Key parts of the source code,
network weights and datasets are available publicly.
- Abstract(参考訳): ホルシュタイン・フリーズ産の牛は、チューリングの反応拡散系から生じたものと類似した、個々の特性の白黒のコートパターンを示す。
この研究は、畳み込みニューラルネットワークとディープメトリック学習技術を介して個々のホルスタイン・フライシャンの視覚検出と生体認証を自動化するために、これらの自然なマーキングを利用する。
既存のアプローチは,様々なメンテナンス要件を持つマーキング,タグ,ウェアラブルに頼っているのに対して,オープン・ハード・セッティングにおける頭上画像からの個々の動物の自動検出,局所化,識別のための完全ハンズオフ手法を提案する。
そこで本研究では,ソフトマックスに基づく相反三重項損失法を用いて同定問題に対処し,固定群れパラダイムに対する手法を詳細に評価する。
ディープメトリック学習システムは、システムトレーニング中の多くの牛を識別し再同定する場合でも、強力なパフォーマンスを示すことが分かり、人口のわずか半分でトレーニングした場合、93.8%の精度が得られる。
本研究は, 牛の非侵入的モニタリングを, 精密農業や自動生産性, 健康, 福祉のモニタリングに応用し, 行動分析, 疫病発生追跡などの獣医学的な研究に役立てることを目的としている。
ソースコード、ネットワークウェイト、データセットの主要部分は公開されています。
関連論文リスト
- MultiCamCows2024 -- A Multi-view Image Dataset for AI-driven Holstein-Friesian Cattle Re-Identification on a Working Farm [2.9391768712283772]
複数のカメラで撮影されたMultiCamCows2024は、ホルシュタイン・フリース種牛の生体認証のための大規模画像データセットである。
データセットは90頭の牛の101,329枚の画像と、基盤となるCCTVの映像で構成されている。
本研究の枠組みは, トラッカーレットの完全自動識別を可能にすることを示し, トラッカーレットの完全性の簡易な検証のみを禁止している。
論文 参考訳(メタデータ) (2024-10-16T15:58:47Z) - Universal Bovine Identification via Depth Data and Deep Metric Learning [1.6605913858547239]
本稿では,個別の牛を正確に識別する深度のみの深度学習システムを提案する。
群れの大きさの増大は、農場における牛と人間の比率を歪め、個人を手動で監視することがより困難になる。
そこで本研究では,市販の3Dカメラの深度データを用いた牛の識別のための深度学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:03:53Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Label a Herd in Minutes: Individual Holstein-Friesian Cattle
Identification [12.493458478953515]
農場全体での視覚牛のIDシステムの訓練には,ラベル付けに10分しかかからなかった。
実世界の農業CCTVにおける個人ホルシュタイン・フリーズの自動識別作業において,自己監督,メートル法学習,クラスタ分析,アクティブラーニングが相互に補完可能であることを示す。
論文 参考訳(メタデータ) (2022-04-22T19:41:47Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - Towards Self-Supervision for Video Identification of Individual
Holstein-Friesian Cattle: The Cows2021 Dataset [10.698921107213554]
我々は最大のアイデンティティアノテートホルスタインフリースアン牛データセットCows2021を公開します。
動物同一性学習のための自己超越信号として,ビデオ間の時間的コートパターンの出現を活用することを提案する。
その結果、top-1 57.0% と top-4: 76.9% と調整された rand 指数 0.53 の精度を示した。
論文 参考訳(メタデータ) (2021-05-05T09:08:19Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
我々は、この課題を克服する2段階の教師なしアプローチを、強力なピクセルベースの特徴を初めて学習することによって定式化する。
本手法は,いくつかの難解なランドマーク検出データセットにおいて最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-04-07T05:42:11Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
本稿では,適切な特徴空間投影と半教師付きラベル推定に基づく半自動データアノテーション手法を提案する。
MNISTデータセットとヒト腸内寄生虫の胎児不純物の有無による画像を用いて本手法の有効性を検証した。
この結果から,人間と機械の相補的能力を組み合わせた視覚分析ツールの付加価値が,より効果的な機械学習に有効であることが示唆された。
論文 参考訳(メタデータ) (2020-07-27T17:03:50Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。