論文の概要: MultiCamCows2024 -- A Multi-view Image Dataset for AI-driven Holstein-Friesian Cattle Re-Identification on a Working Farm
- arxiv url: http://arxiv.org/abs/2410.12695v1
- Date: Wed, 16 Oct 2024 15:58:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:06.576745
- Title: MultiCamCows2024 -- A Multi-view Image Dataset for AI-driven Holstein-Friesian Cattle Re-Identification on a Working Farm
- Title(参考訳): MultiCamCows2024 - 作業農場におけるAI駆動型ホルシュタイン・フリース牛再同定のためのマルチビューイメージデータセット
- Authors: Phoenix Yu, Tilo Burghardt, Andrew W Dowsey, Neill W Campbell,
- Abstract要約: 複数のカメラで撮影されたMultiCamCows2024は、ホルシュタイン・フリース種牛の生体認証のための大規模画像データセットである。
データセットは90頭の牛の101,329枚の画像と、基盤となるCCTVの映像で構成されている。
本研究の枠組みは, トラッカーレットの完全自動識別を可能にすることを示し, トラッカーレットの完全性の簡易な検証のみを禁止している。
- 参考スコア(独自算出の注目度): 2.9391768712283772
- License:
- Abstract: We present MultiCamCows2024, a farm-scale image dataset filmed across multiple cameras for the biometric identification of individual Holstein-Friesian cattle exploiting their unique black and white coat-patterns. Captured by three ceiling-mounted visual sensors covering adjacent barn areas over seven days on a working dairy farm, the dataset comprises 101, 329 images of 90 cows, plus the underlying original CCTV footage. The dataset is provided alongside full computer vision recognition baselines, that is both a supervised and self-supervised learning framework for individual cow identification trained on cattle tracklets. We report a performance above 96% single image identification accuracy from the dataset and demonstrate that combining data from multiple cameras during learning enhances self-supervised identification. We show that our framework enables fully automatic cattle identification, barring only the simple human verification of tracklet integrity during data collection. Crucially, our study highlights that multi-camera, supervised and self-supervised components in tandem not only deliver highly accurate individual cow identification but also achieve this efficiently with no labelling of cattle identities by humans at all. We argue that this improvement in efficacy has practical implications for livestock management, behaviour analysis, and agricultural monitoring. For full reproducibility and practical ease of use, we publish all key software and code including re-identification components and the species detector with this paper.
- Abstract(参考訳): 複数のカメラで撮影されたMultiCamCows2024は、独自の黒と白のコートパターンを利用して、ホルシュタイン・フリーズ人の牛の生体認証を行う。
3つの天井に搭載された視覚センサーが、作業中の乳牛農場で7日間にわたって隣接する納屋エリアをカバーし、90頭の牛の101,329枚の画像と、その下にあるCCTVの映像をキャプチャした。
データセットは完全なコンピュータビジョン認識ベースラインと共に提供され、牛のトラックレットで訓練された個々の牛の識別のための教師付きおよび自己教師付き学習フレームワークである。
本研究では,データセットから画像の識別精度を96%以上上回る性能を報告し,学習中の複数のカメラからのデータを組み合わせることで,自己教師付き識別が促進されることを示した。
また,本フレームワークは,データ収集時のトラックレットの完全性に対する簡単な検証のみを禁止し,牛の完全自動識別を可能にすることを示す。
より重要なことは、マルチカメラ、教師付き、そして自己管理されたタンデムの構成要素が、高い精度の個々の牛の識別を提供するだけでなく、人間による牛の身元のラベル付けを全く行わずに効率よく達成できることである。
我々は,この改善が家畜管理,行動分析,農業モニタリングに実用的影響を及ぼすと論じている。
本論文では,再現性と実用性の向上のために,再識別コンポーネントや種検出装置を含むすべてのキーソフトウェアとコードを公開する。
関連論文リスト
- CattleEyeView: A Multi-task Top-down View Cattle Dataset for Smarter
Precision Livestock Farming [6.291219495092237]
CattleEyeViewデータセットは、最初のトップダウンビューマルチタスク牛のビデオデータセットである。
データセットには、30,703フレームで753種類のトップダウン牛のインスタンスが含まれている。
我々は,各タスクに対するモデルの性能を評価するためのベンチマーク実験を行った。
論文 参考訳(メタデータ) (2023-12-14T09:18:02Z) - Label a Herd in Minutes: Individual Holstein-Friesian Cattle
Identification [12.493458478953515]
農場全体での視覚牛のIDシステムの訓練には,ラベル付けに10分しかかからなかった。
実世界の農業CCTVにおける個人ホルシュタイン・フリーズの自動識別作業において,自己監督,メートル法学習,クラスタ分析,アクティブラーニングが相互に補完可能であることを示す。
論文 参考訳(メタデータ) (2022-04-22T19:41:47Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - Towards Self-Supervision for Video Identification of Individual
Holstein-Friesian Cattle: The Cows2021 Dataset [10.698921107213554]
我々は最大のアイデンティティアノテートホルスタインフリースアン牛データセットCows2021を公開します。
動物同一性学習のための自己超越信号として,ビデオ間の時間的コートパターンの出現を活用することを提案する。
その結果、top-1 57.0% と top-4: 76.9% と調整された rand 指数 0.53 の精度を示した。
論文 参考訳(メタデータ) (2021-05-05T09:08:19Z) - Unsupervised Pretraining for Object Detection by Patch Reidentification [72.75287435882798]
教師なし表現学習は、オブジェクトディテクタの事前トレーニング表現で有望なパフォーマンスを実現します。
本研究では,オブジェクト検出のための簡易かつ効果的な表現学習手法であるパッチ再識別(Re-ID)を提案する。
私たちの方法は、トレーニングの反復やデータパーセンテージなど、すべての設定でCOCOの同等を大幅に上回ります。
論文 参考訳(メタデータ) (2021-03-08T15:13:59Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
本稿では、アノテーションを必要としない純粋に教師なしの人物識別(Re-ID)問題に取り組む。
各クラスタを複数のプロキシに分割し、それぞれのプロキシが同じカメラからのインスタンスを表すことを提案する。
カメラ認識プロキシに基づいて、カメラ内およびカメラ間コントラスト学習コンポーネントをre-idモデル用に設計する。
論文 参考訳(メタデータ) (2020-12-19T12:37:04Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - Visual Identification of Individual Holstein-Friesian Cattle via Deep
Metric Learning [8.784100314325395]
ホルシュタイン・フリーズ産の牛は、チューリングの反応拡散系から生じたものと類似した、個々の特性の白黒のコートパターンを視覚的に示す。
この研究は、畳み込みニューラルネットワークとディープメトリック学習技術を介して、個々のホルシュタイン・フリース人の視覚的検出と生体認証を自動化するために、これらの自然なマーキングを利用する。
論文 参考訳(メタデータ) (2020-06-16T14:41:55Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
我々は,異なるパターンの個体の自動検出と認識のための枠組みを開発する。
我々は最近提案したFaster-RCNNオブジェクト検出フレームワークを用いて画像中の動物を効率的に検出する。
我々は,シマウマおよびジャガー画像の認識システムを評価し,他のパターンの種への一般化を示す。
論文 参考訳(メタデータ) (2020-05-06T15:29:21Z) - Towards Precise Intra-camera Supervised Person Re-identification [54.86892428155225]
人物の再識別(Re-ID)のためのカメラ内監視(ICS)は、アイデンティティラベルが各カメラビュー内に独立してアノテートされていると仮定する。
カメラ間ラベルの欠如により、ICS Re-ID問題は、完全に監督されたラベルよりもはるかに難しい。
われわれの手法は、2つのデータセットで最先端の完全教師付き手法に匹敵する性能を発揮する。
論文 参考訳(メタデータ) (2020-02-12T11:56:30Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。