論文の概要: Domain Adaptation with Morphologic Segmentation
- arxiv url: http://arxiv.org/abs/2006.09322v1
- Date: Tue, 16 Jun 2020 17:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 20:48:47.033380
- Title: Domain Adaptation with Morphologic Segmentation
- Title(参考訳): 形態的セグメンテーションによるドメイン適応
- Authors: Jonathan Klein, S\"oren Pirk, Dominik L. Michels
- Abstract要約: 本稿では,任意の入力領域(実領域と合成領域)の画像を一様出力領域に変換するために,形態的セグメンテーションを用いた新しいドメイン適応フレームワークを提案する。
私たちのゴールは、複数のソースからのデータを共通の表現に統一する前処理のステップを確立することです。
都市景観のシミュレートと実データの4つのデータ集合上で, 定性的に定量的に評価し, 提案手法の有効性を示す。
- 参考スコア(独自算出の注目度): 8.0698976170854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel domain adaptation framework that uses morphologic
segmentation to translate images from arbitrary input domains (real and
synthetic) into a uniform output domain. Our framework is based on an
established image-to-image translation pipeline that allows us to first
transform the input image into a generalized representation that encodes
morphology and semantics - the edge-plus-segmentation map (EPS) - which is then
transformed into an output domain. Images transformed into the output domain
are photo-realistic and free of artifacts that are commonly present across
different real (e.g. lens flare, motion blur, etc.) and synthetic (e.g.
unrealistic textures, simplified geometry, etc.) data sets. Our goal is to
establish a preprocessing step that unifies data from multiple sources into a
common representation that facilitates training downstream tasks in computer
vision. This way, neural networks for existing tasks can be trained on a larger
variety of training data, while they are also less affected by overfitting to
specific data sets. We showcase the effectiveness of our approach by
qualitatively and quantitatively evaluating our method on four data sets of
simulated and real data of urban scenes. Additional results can be found on the
project website available at http://jonathank.de/research/eps/ .
- Abstract(参考訳): 本稿では,任意の入力領域(実および合成領域)から一様出力領域への画像変換に形態素セグメンテーションを用いる新しいドメイン適応フレームワークを提案する。
我々のフレームワークは確立された画像から画像への変換パイプラインに基づいており、まず入力画像から形態や意味を符号化した一般化表現、すなわちエッジ・プラス・セグメンテーション・マップ(EPS)を変換して出力領域に変換する。
出力領域に変換された画像は、フォトリアリスティックで、異なる現実(例えば、レンズフレア、モーションボケなど)と合成(非現実的なテクスチャ、単純化された幾何学など)のデータセットに一般的に存在するアーティファクトを含まない。
私たちのゴールは、複数のソースからのデータを共通の表現に統一し、コンピュータビジョンにおける下流タスクのトレーニングを容易にする前処理ステップを確立することです。
このように、既存のタスクのためのニューラルネットワークは、さまざまなトレーニングデータに基づいてトレーニングできるが、特定のデータセットへの過度な適合の影響も少ない。
都市景観のシミュレートと実データの4つのデータ集合上で, 定性的に定量的に評価し, 提案手法の有効性を示す。
さらなる結果はプロジェクトのwebサイトhttp://jonathank.de/research/eps/で見ることができる。
関連論文リスト
- Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-04-01T17:48:15Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Cross-domain and Cross-dimension Learning for Image-to-Graph
Transformers [50.576354045312115]
直接画像からグラフへの変換は、単一のモデルにおけるオブジェクトの検出と関係予測を解決するための課題である。
画像-グラフ変換器のクロスドメインおよびクロス次元変換学習を可能にする一連の手法を提案する。
そこで我々は,2次元の衛星画像上でモデルを事前学習し,それを2次元および3次元の異なるターゲット領域に適用する。
論文 参考訳(メタデータ) (2024-03-11T10:48:56Z) - Diversify Your Vision Datasets with Automatic Diffusion-Based
Augmentation [66.6546668043249]
ALIA(Automated Language-Guided Image Augmentation)は、大規模ビジョンと言語モデルを用いてデータセットのドメインの自然言語記述を自動的に生成する手法である。
データ整合性を維持するために、オリジナルのデータセットでトレーニングされたモデルは、最小限の画像編集とクラス関連情報を破損したデータをフィルタリングする。
そこで本研究では,ALIAが従来のデータ拡張や,詳細な分類作業におけるテキストから画像への変換を超越できることを示す。
論文 参考訳(メタデータ) (2023-05-25T17:43:05Z) - Using Language to Extend to Unseen Domains [81.37175826824625]
ビジョンモデルがデプロイ時に遭遇する可能性のあるすべてのドメインのトレーニングデータを集めることは、費用がかかる。
トレーニングドメインと拡張したいが、堅牢性を改善するためのデータを持っていないドメインを、いかに単純に言葉で表現するかを考えます。
共同画像と言語埋め込み空間を備えたマルチモーダルモデルを用いて、LADSはトレーニング領域から各未確認テスト領域への画像埋め込みの変換を学習する。
論文 参考訳(メタデータ) (2022-10-18T01:14:02Z) - Unsupervised Domain Adaptation with Histogram-gated Image Translation
for Delayered IC Image Analysis [2.720699926154399]
Histogram-gated Image Translation (HGIT)は、特定のソースデータセットからターゲットデータセットのドメインに変換する、教師なしのドメイン適応フレームワークである。
提案手法は,報告したドメイン適応手法と比較して最高の性能を達成し,完全教師付きベンチマークに適当に近い。
論文 参考訳(メタデータ) (2022-09-27T15:53:22Z) - Self-Supervised Learning of Domain Invariant Features for Depth
Estimation [35.74969527929284]
単一画像深度推定のための教師なし合成-現実的領域適応の課題に対処する。
単一画像深度推定の重要なビルディングブロックはエンコーダ・デコーダ・タスク・ネットワークであり、RGB画像を入力とし、出力として深度マップを生成する。
本稿では,タスクネットワークにドメイン不変表現を自己教師型で学習させる新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-06-04T16:45:48Z) - Semantically Adaptive Image-to-image Translation for Domain Adaptation
of Semantic Segmentation [1.8275108630751844]
街路シーンのセマンティックセグメンテーションにおけるドメイン適応の問題に対処する。
最先端のアプローチの多くは、結果が入力とセマンティックに一致していることを示しながら、ソースイメージの翻訳に重点を置いている。
画像のセマンティクスを利用して翻訳アルゴリズムを導くことも提案する。
論文 参考訳(メタデータ) (2020-09-02T16:16:50Z) - Learning Texture Invariant Representation for Domain Adaptation of
Semantic Segmentation [19.617821473205694]
合成データで訓練されたモデルが実際のデータに一般化することは困難である。
我々はスタイル伝達アルゴリズムを用いて合成画像のテクスチャを多様性する。
我々は、ターゲットテクスチャを直接監視するために、自己学習でモデルを微調整する。
論文 参考訳(メタデータ) (2020-03-02T13:11:54Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
教師なしのドメイン適応アルゴリズムは、あるドメインから学んだ知識を別のドメインに転送することを目的としている。
本稿では,新しい画素単位の対向領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-09T19:00:35Z) - Virtual to Real adaptation of Pedestrian Detectors [9.432150710329607]
ViPeDは、ビデオゲームGTA V - Grand Theft Auto Vのグラフィカルエンジンで収集された新しい合成画像セットである。
本稿では,歩行者検出作業に適した2つの異なる領域適応手法を提案する。
実験によると、ViPeDでトレーニングされたネットワークは、実世界のデータでトレーニングされた検出器よりも、目に見えない現実世界のシナリオを一般化できる。
論文 参考訳(メタデータ) (2020-01-09T14:50:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。